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To self, or not to self... A review of outcrossing and
pollen-mediated gene flow in neotropical trees
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Despite the typically low population densities and animal-
mediated pollination of tropical forest trees, outcrossing and
long-distance pollen dispersal are the norm. We reviewed the
genetic literature on mating systems and pollen dispersal for
neotropical trees to identify the ecological and phylogenetic
correlates. The 36 studies surveyed found >90% outcrossed
mating for 45 hermaphroditic or monoecious species. Self-
fertilization rates varied inversely with population density and
showed phylogenetic and geographic trends. The few direct
measures of pollen flow (N= 11 studies) suggest that pollen
dispersal is widespread among low-density tropical trees,

ranging from a mean of 200m to over 19km for species
pollinated by small insects or bats. Future research needs to
examine (1) the effect of inbreeding depression on observed
outcrossing rates, (2) pollen dispersal in a wide range of
pollination syndromes and ecological classes, (3) and the
range of variation of mating system expression at different
hierarchical levels, including individual, seasonal, population,
ecological, landscape and range wide.
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Introduction

Mating systems, the genetic relatedness and patterns of
pairings between gametes (as distinct from breeding
systems, the morphological and physiological character-
istics of pairing; Neal and Anderson, 2005), play a central
role in evolutionary theories of the origin of tree species
richness in the tropics (Bawa, 1992). In species-rich
tropical rainforests, the population density of adult trees
of a given species is generally low and thus distances
between the crowns of flowering conspecifics will be
large (Hubbell and Foster, 1983). This observation
originally led botanists to predict that most tropical tree
species should be highly self-fertilizing or inbred (eg
Corner, 1954; Baker, 1959; Fedorov, 1966), under the
premise that animal pollinators are unable to move
among widely spaced conspecifics. Over the last 30
years, this early view of tropical pollinators and the
mating systems of tropical tree species has been
completely revised. Community-level studies of breed-
ing systems in tropical trees revealed high levels of
dioecey (>20%), and cross-pollination studies provided
evidence of self-incompatibility in hermaphroditic or
monoecious species (Bawa et al, 1985). Genetic marker-
based analyses of mating system have tended to confirm
these field studies, revealing high rates of outcrossing
and long-distance pollen dispersal for a range of
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pollination syndromes (eg Boshier et al, 1995a,b; Stacy
et al, 1996; Loveless et al, 1998; Nason et al, 1998).

Genetic marker-based studies have also revealed that
outcrossing rate and pollen dispersal distances are
sensitive to ecological factors, and show variation over
both spatial and temporal scales (Nason and Hamrick,
1997). For example, factors such as population density
and pollinator abundance and composition change over
the range of a species, have a concomitant impact on
outcrossing rate and pollen-mediated dispersal at a
landscape scale (Franceschinelli and Bawa, 2000; Dick
et al, 2003; Degen et al, 2004). Mating system analyses also
indicate the potential for variation in the relative rates of
selfing and outcrossing at a micro-scale, where variation
occurs among individuals within populations, among
populations over years and from one flowering event
to another (Murawski and Hamrick, 1991; Nason and
Hamrick, 1997). Finally, phylogenetic constraints on
floral morphology and self-compatibility system are also
expected to influence the observed outcrossing rates and
patterns of pollen dispersal (Gribel et al, 1999).

This review examines studies that use molecular
genetic techniques to quantify mating systems and
pollen-mediated gene dispersal in neotropical tree
species. The review is limited to the neotropics, as the
authors are familiar with the study species in this region.
However, given the pantropical distribution of most
tropical tree families and many genera (Pennington and
Dick, 2004), our conclusions should have broad geo-
graphic application. Our discussion of pollen dispersal is
focussed on undisturbed populations, as Lowe et al
(2005) reviews studies in fragmented habitats. Our
objectives are to (1) examine the relationship between
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the multilocus outcrossing rate (¢,,) and phylogenetic
and ecological factors, such as population density,
pollination syndrome and habitat change, and (2)
determine the distances over which pollen is dispersed
among low-density, animal-pollinated trees in species-
rich lowland neotropical forests.

Review of the literature

A total of 36 case studies encompassing 45 neotropical
tree species were surveyed. For 29 of these case studies, a
multilocus mixed-mating model (eg Ritland and Jain,
1981; Ritland, 1986) was used to determine the mating
system. Henceforth, ‘mating system’ is used synony-
mously with the outcrossing rate. Some estimate of
pollen dispersal was made in 10 studies. Allozymes were
employed in 22 case studies, whereas microsatellites
were utilized in 14 case studies. The results of the
literature survey are summarized in Table 1.

Correlates of mating system

Phylogeny: As the anatomical and biochemical aspects
of self-incompatibility systems may be phylogenetically
constrained (Gribel et al, 1999), we looked for
phylogenetic association with the mating system. The
taxonomic breadth encompassed by the relevant
literature presently includes 15 plant families (Table 1),
with an average of 2.9 species examined per family.

It is noteworthy that species in the Malvaceae
(subfamily Bombacoideae; former Bombacaceae) fre-
quently exhibit outcrossing rates lower than 80%
(mixed-mating systems). Mixed-mating systems were
found in Pachira quinata (Fuchs et al, 2003), Cavanillesia
platanifolin (Murawski and Hamrick, 1992b), Ceiba pen-
tandra (Murawski et al, 1990; Murawski and Hamrick,
1991, 1992a; Gribel et al, 1999; Lobo et al, 2005) and
Pseudobombax munguba (Gribel and Gibbs, 2002). This
pattern may apply more generally to trees in the order
Malvales, which includes the Sterculiaceae, Ebenaceae
and Tiliaceae. Self-fertilization rates higher than 50%
have been documented in Shorea and Stemonoporus of the
Dipterocarpaceae (Murawski and Bawa, 1994; Murawski
et al, 1994), which is the dominant family of tropical trees
in Asia, also in the Malvales. The dominant tree family of
Neotropical forests — the legume family Fabaceae — also
exhibits patterns of mixed mating, with outcrossing rates
as low as 0.54 in the pioneer legume Senna multijuga
(Ribeiro and Lovato, 2004), 0.42 in Dicorynia guianensis
(Latouche-Hallé ef al, 2004), <0.50 in Platypodium elegans
(Hufford and Hamrick, 2003) and 0.63 in Dinizia excelsa
(Dick et al, 2003).

Published mating system studies do not encompass
the taxonomic richness of tropical forests. We found no
mating system studies for some of the most species-rich
neotropical tree families, including the Sapotaceae,
Annonaceae, Myrtaceae, Chrysobalanaceae and Burser-
aceae. In controlled-pollination studies, however, Bawa
et al (1985) report successful self-pollination in the
Annonaceae. In the absence of genetic analysis, however,
it is not possible to distinguish between self-fertilization
and apomixis in such studies. Apomixis, the partheno-
genic production of seed, can be induced by pollen, and
has been documented in the Malvacean tree genera
Pachira (Baker, 1960), Bombacopsis (Duncan, 1970) and
Eriotheca (Oliveira et al, 1992), and it has also been
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documented in the Dipterocarpaceae (Kaur ef al, 1978).
Apomixis may have an important role in the breeding
structure of some populations. In a fascinating Malaysian
study of a species in the pantropical genus Garcinia (G.
scortechinii), Thomas (1997) found an entirely female
population that persisted solely through apomixis.
High outcrossing rates result from self-incompatibility,
and may be phylogenetically constrained, but inbreeding
depression at the embryo stage can also produce largely
outcrossed offspring (Seavey and Bawa, 1986). In order
to distinguish between the effects of self-incompatibility
and inbreeding depression, Hufford and Hamrick (2003)
documented the change in outcrossing rate in P. elegans
(Fabaceae) at three early life stages: aborted embryos,
mature seeds and seedlings. The outcrossing rate
increased across each life stage (t,=0.79, 0.82 and
0.91), suggesting that inbreeding depression may explain
high outcrossing observed in seedlings, the stage at
which many genetic marker studies of mating system are
carried out. Several neotropical trees also have late-
acting self-incompatibility mechanisms (eg Tabebuia;
Bittencourt and Semir, 2005), and so a genetic estimation
of outcrossing rate would be strongly influenced by the
developmental stage at which seeds are assessed.

Individual, population, range and landscape variation:
Individual outcrossing rates can vary widely. Murawski
and Hamrick (1992a) reported outcrossing rates in C.
pentandra (Malvaceae) ranging from complete self-
fertilization to complete outcrossing. This variation was
explained by asynchrony in flowering times and
nonrandom foraging behaviour of the bat pollinators.
Similar results for C. pentandra reported by Gribel (in
Wilson et al, 2001) showed the percentage of selfed seeds
to range from zero to 97.8% for individual trees.
Multilocus outcrossing rates for 25 individual trees
varied from 0.38 to 1.00 in an Amazonian population of
Swietenia macrophylla (Meliaceae), although 23 individuals
were predominantly or completely outcrossing (Lemes,
2000). Similarly, Latouche-Hallé et al (2004) observed
marked variation in outcrossing rates among individuals
of D. guianensis (Fabaceae), likely due to asynchrony in
flowering times. Rocha and Aguilar (2001) report spatial
and temporal variation in outcrossing rates in
Enterolobium cyclocarpum over two consecutive years.
Despite these multiple sources of individual variation in
outcrossing rates, there are some clear ecological
correlates of mating system variation.

Murawski and Hamrick (1991) examined the relation-
ship between the density of flowering individuals in a
population and its outcrossing rate in nine neotropical
tree species, and found that three representatives from
the Bombacoideae (Malvaceae) exhibited a correlation
between outcrossing rate and flowering tree density.
Additionally, Murawski and Hamrick (1992b) reported
low outcrossing rates in a low-density population of
C. platanifolia (t,,=0.213) compared to a high-density
population (t,, =0.661). Murawski and Hamrick (1992b)
and Nason and Hamrick (1997) report this pattern for
other species.

There can be a geographic or historical component of
mating system variation. C. pentandra has a neotropical
origin, but has become established in Africa via oceanic
dispersal at least 14000 years before present (Dick,
unpublished data). While neotropical populations dis-
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play predominant outcrossing or mixed mating, African
populations are reportedly completely self-compatible
(Baker, 1955, 1965), which may have been a requisite
for establishing founder populations following oceanic
dispersal. At the landscape scale, Ribeiro and Lovato
(2004) found two populations of S. multijuga (Fabaceae)
to have significantly different outcrossing rates (t,,=
0.838 and 0.540), thought to be a reflection of genetic and
environmental differences among populations. Muraws-
ki and Hamrick (1992b) attributed differences in the
outcrossing rate of two populations of C. platanifolia to
differences in flowering-plant densities. Mating system
variation at the regional scale may also reflect differences
among populations in the genetic load that leads to
inbreeding depression.

Changes in the landscape, such as selective logging,
deforestation and habitat destruction alter population
density, demographic structure, phenology and the
abundance, diversity and behaviour of pollinator com-
munities (Dick, 2001; Lowe et al, 2005), thereby imping-
ing on the mating system. Doligez and Joly (1997) found
significant differences between outcrossing rates of
Carapa procera in undisturbed plots and logged plots
(tm =0.85 and 0.63, respectively). A significant increase
in self-fertlization rates has been reported for the
emergent legume D. excelsa in undisturbed and frag-
mented forests in Brazil (t,=0.897 and 0.845, respec-
tively) (Dick et al, 2003), and in Costa Rica reduced
outcrossing rates were documented for Symphonia
globulifera (t,,=0.902 and 0.739; Aldrich and Hamrick,
1998) and P. quinata (t,,=0.915 and 0.777; Fuchs et al,
2003) in disturbed habitats that contained low popula-
tion densities of reproductive trees.

Other factors are expected to cause variation in mating
system, but have not been covered here due to lack of
comparative data. These factors include the influence of
pollination syndrome (Barrett, 2003), canopy height
(understory, canopy, emergent) and colonisation guild.
The pollination syndromes of neotropical trees are highly
variable, and include small and large insects (eg Bawa
et al, 1985), hummingbirds (the principal avian pollinator
in the neotropics; eg Degen et al, 2004), bats (eg
Murawski and Hamrick, 1991; Collevatti et al, 2001)
and, rarely, wind (eg Alvarez-Buylla and Garay, 1994) or
wind-directed insect pollination (Nason et al, 1998).
Insect pollination syndromes are well represented, but
important and distinctive groups have been overlooked,
such as the small beetle pollination system of the
Myristicaceae (Armstrong and Irvine, 1989).

Pollen dispersal

The first allozyme studies of pollen dispersal in tropical
trees tracked rare alleles or used fractional paternity
analysis, permitting direct inference of pollen dispersal
over hundreds of metres in undisturbed forest (Hamrick
and Murawski, 1990; Boshier et al, 1995b; Loveless et al,
1998). Hamrick and Murawski (1990) found that 20% of
pollen moved over 750m in P. elegans, and over 25% of
pollen moved more than 500m in Tachigali versicolor in
undisturbed forest on Barro Colorado Island (BCI)
Panama (also see Loveless et al, 1998). Both tree species
are large, mass-flowering papilionoid legumes found in
low densities, and are pollinated by large bees (eg
Centris, Xylocopa). Stacy et al (1996) studied pollen
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dispersal in three tree species found in low densities
(~0.3 tree/ha) on BCI, whose small-insect floral visitors
include beetles, small bees and moths. The combination
of rarity and small-insect pollination leads to an
expectation of low outcrossing and nearest-neighbour
mating (Levin and Kerster, 1974). Counter to this
expectation, all three populations were 100% outcrossed,
and pollen dispersal distances exceeded the mean
distances to the nearest potential mates. Violation of
nearest-neighbour mating may occur in low-density
populations because nearest flowering neighbours are
in fact not close (>50m) and small insects may
frequently not fly in the direction of the nearest
neighbour. In a study of an almost monospecific stand
of moth-pollinated Cordia alliadora (Boraginaceae) in
Costa Rica, Boshier et al (1995b) reported a majority of
pollen dispersal at 75 m, with some travelling over 280 m.
Though the number of comparable studies is low, these
results suggest that trees in low-density populations
receive pollen over larger distances than do densely
spaced trees.

In addition, or possibly due to an ecological or
pollination byproduct of density, the relative canopy
position and colonization guild of tropical trees are also
expected to influence gene flow and mating system
dynamics (Bawa et al, 1985; Nason and Hamrick, 1997).
However, few mating system studies have been con-
ducted on subcanopy/understory species or slow-grow-
ing, shade-tolerant species, making comparisons with
the better-studied classes of canopy/emergents and
pioneer species, respectively, problematic. Such studies
would have to involve a large sample of species with
sufficient representation of other key traits (ie inbreeding
depression, population density and phylogeny), and
may be possible in future, following further work on
individual case studies.

Fig trees (Ficus) on BCI are the lowest density
populations yet studied with respect to pollen dispersal
(Nason et al, 1996, 1998). Figs are generally obligately
outcrossing and are pollinated by miniscule (~2mm)
wasps (Agaonidae), which live only for 2-3 days. Figs
usually have species-specific relationship with wasp
pollinators (for counterexamples, see Molbo et al, 2003).
Several species of Ficus on BCI occur at very low
population densities; for example, there are only 20
known adults of Ficus dugandii in 16 km? of forest of BCI.
Often, a single pollinating wasp visits the inverted fig
inflorescence, in which case the seeds from that fruit are
full siblings. Nason et al (1998) reconstructed paternal
diploid genotypes of singly pollinated fruits through
exclusion analysis, and found that fruits on maternal
trees had numerous pollen donors. In all, 15 fruits from a
F. dugandii, for example, yielded a minimum estimate of
11 pollen donors. The authors suggest that the number of
pollen donors would have continued to rise if more
single-sired fruits had been genotyped. Based on the
population density, the authors estimated that pollen is
routinely dispersed over distances of 5.8-14.2km, and
that the breeding areas of these figs range from 106 to
632km?. How do tiny, ephemeral wasps orient them-
selves and travel such long distances between conspe-
cific trees? The authors suggest that the fig wasps
become windborne, then hone in on scents produced
by the receptive flowering tree. Further research is
needed to precisely characterize mating patterns in this



fascinating system, and to test the hypothesis of directed
pollen dispersal.

Vertebrate pollinators are also capable of maintaining
tree reproductive populations over large spatial scales.
For example, bats have been noted to carry C. pentandra
pollen over distances greater than 5km in many
instances, and a maximum dispersal distance of
18.6km observed (Gribel, reported in Wilson et al,
2001), the greatest single pollen dispersal distance so
far recorded in the literature.

The development of analytical techniques such as
Two-Gener (Austerlitz et al, 2004; Smouse and Sork, 2004)
has made it possible to infer the shape of the pollen
dispersal curve using genotyped seed arrays, mapped
maternal trees and an estimate of population density. The
method treats the pollen pool of a progeny array as a
population, then estimates genetic differentiation with an
Fq-based statistic. Using this approach, Dick et al (2003)
estimated the mean pollen dispersal distance of Dinzia
excelsa of 212m in undisturbed forest. Degen et al (2004)
estimate the mean pollen dispersal distances for S.
globulifera of between 27 and 53m, depending on the
model used. The shorter pollen dispersal distance may
be explained by the pollination system of S. globulifera
(hummingbird) compared to D. excelsa (small bee), or
by the difference in population density: the effective
density of S. globulifera is more than 10 times greater than
D. excelsa.

Conclusions and future recommendations

Neotropical tree species exhibit characteristics in the
reproductive system that allow demographic persistence
and heterozygosity even at low population densities.
Selection pressures against inbreeding in low-density
populations of tropical trees has presumably been the
main driving force responsible for the evolution of these
characters, which include (1) the constellation of attrac-
tion mechanisms for animal pollination and pollinator
constancy (see Endress, 1998), and (2) the widespread
occurrence of self-incompatibility mechanisms (eg Bawa
et al, 1985). Genetic studies show that tropical animals
can be very efficient vectors of pollen flow, capable of
promoting outcrossing and successfully moving pollen
between distantly spaced individuals in heterogeneous
habitats.

Despite these advances in our understanding of
reproduction and gene flow in neotropical trees, the
available research barely touches the surface of the
taxonomic and ecological diversity represented in these
plants. Several areas for future research can be high-
lighted based on the findings of this review:

(1) Further work is required to examine the fitness
consequences of mating system variation. This
requires focus on the effects of inbreeding depres-
sion, and measurement of the relative fitness of
selfed vs outcrossed progeny at various life-history
stages.

(2) Researchers need to be aware of the possibility of
apomixes in the seed production. This will be evident
with microsatellites when maternal trees and seeds
share identical multilocus genotypes.

(3) There is a need to understand how particular classes
of pollinators serve as pollen vectors. These include
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the small-beetle pollination system found in the
nutmeg family (Myristicaceae), euglossine bee and
hummingbird pollination.

(4) Genetic studies of pollen dispersal often fail to
document the putative pollinators. While many
neotropical trees are visited by generalist pollinators,
there is often a narrower range of effective pollina-
tors (Bawa, 1992) and pollinator communities may
shift across habitats (Dick, 2001). The effective
pollinators need to be identified so that generali-
zations can be applied to other plant taxa sharing
those pollinators.

(5) More studies should document the range of mating
system variation across multiple seasons, as signifi-
cant seasonal variation has been noted where
investigated (eg Rocha and Aguilar, 2001).

(6) More work is required to examine the relationship
between mating system and key ecosystem class
(canopy vs understory, pioneers vs shade tolerant).
Several theoretical predictions have been made
connected with population density and pollinator
motility, but lack of comparative data sets has so far
not allowed rigorous empirical assessment.
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