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ABSTRACT . The ultrastructure of cribellum silk and associated fibers is described for nine species in eigh t
families, and data from studies of 22 other species are summarized. Possible synapomorphies for filistatid s
(flattened cribellum fibers), for all cribellates other than hypochilids + filistatids (nodules on cribellum fibers) ,
for deinopids + uloborids + dictynids, and for uloborids + dictynids (loss of reserve warp fibers) are described .
Filistatid silk is distinctive and especially complex, and the spatial arrangement of different components i s
described for the first time.

RESUMEN . Se describe la ultraestructura de la seda del cribelo y las fibras asociadas con ella de nueve especie s
en ocho familial, y se resumen ademas los datos de 22 otras especies. Se destacan posibles sinapomorfias para
filistatidos, para todos los cribelados menos hypochilidos y filistatidos, para dinopidos + uloboridos + dictynidos ,
y para uloboridos + dictynidos . La seda de los filistatidos es especialmente distinctiva, y la ubicacion espacia l
de los diferentes componentes de ella se describe por primera vez .

Nonviscous adhesive silk is produced by cri-
bellate and some sicariid spiders . The ultrastruc-
ture of this silk and the lines associated with it
have been described in six different families (Fil-
istatidae, Uloboridae, Deinopidae, Eresidae ,
Oecobiidae, and Amaurobiidae), using both the
light microscope and the scanning and trans -
mission electron microscopes (Comstock 1948 ;
Lehmensick & Kullmann 1957; Friedrich &
Langer 1969 ; Kullmann 1970, 1975 ; Zimmer-
mann 1975 ; Opell 1979, 1989a; Peters 1987 ,
1992a-c) . This paper describes the cribellum silk
and associated lines of species in five additional
families, Desidae, Dictynidae, Hypochilidae ,
Stiphidiidae, and Tengellidae, and from addi-
tional species ofAmaurobiidae, Deinopidae, Fil-
istatidae and Uloboridae. We review data on the
distribution of several characteristics of cribel-
lum fibers and associated lines . Some characters
are apparently consistent within taxonomi c
groups, and may be useful in systematic studies .

METHOD S

No single technique is adequate for studying
the complex arrays of fine fibers and lines in
cribellate adhesive threads . The light microscope
is incapable of resolving finer fibers, while th e
harsh preparation techniques and observation
conditions ofboth the transmission electron mi-
croscope (TEM) and the scanning electron mi-
croscope can seriously distort arrays of silk (Pe-
ters 1987, 1992a) . Both light microscope and
TEM were used in the present study.

Silk was collected in the field from webs o f
mature or nearly mature females, using micro -
scope slides to which three or four square plex-
iglass rods had been glued (Opell 1989b) . The
upper surface of each rod was covered with dou-
ble-sided sticky tape . The web was pressed against
the tape, taking care to minimize stress on thread s
between the rods, and scissors were used to cut
the threads connecting the sample to the rest o f
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Figures 1-4 .-Mature female Hypochilus thorelli : 1, Mass of crihelium fibrils (barely visible) and highly coile d
primary reserve warp (RW1) laid on a foundation line (F) (light microscope) ; 2, same, with arrow showing edg e
of cloud of cribellum fibrils (light microscope) ; 3, one pair of straight axial lines (AX) and two highly curled
reserve warp lines of different diameters (RW1, RW2), with fibrils in the background (TEM) ; 4, cylindrical
cribellum fibrils lacking nodules (TEM). Note that fibril diameters do not vary along their lengths (compar e
with Fig. 9 of Kukulcania). Scale lines are, respectively, 50u, 20u, 2 .6u, and 0 .5µ.

the web. Most observations with the light mi-
croscope were made on these slides.

Samples of silk for TEM study were carefully
placed on untreated grids under a dissecting mi-
croscope, taking care to avoid stressing threads .
None of the silk samples were coated or treate d
in any way before being examined . The silk of
Hyptiotes thorelli Marx had been stored in sealed
containers for 2–3 years ; that of the other species
was fresher (less than about six weeks old) .

The terms "fiber" and "fibril" are used for th e
smallest units of silk (single cylinders) ; "line"
refers to a combination of fibers of the same type
running in parallel; "thread" and "band" refer
to combinations of fibers and lines of differen t
types . "Cribellum fibers" are presumed to emerg e
from the cribellum, while "cribellate" lines an d
threads ("calamistrated strands" of Peters 1987)
contain cribellum fibers as well as other lines that
presumably emerge from other spinnerets .

Terminology for different types of fibers an d
lines follows that of Peters (1987), with the ex -

ception that we have used the earlier, function -
ally descriptive term "reserve warp fibers" o f
Kullmann (1975) for the highly curled or un-
dulating thicker fibers often associated with cri -
bellum fibrils ("undulating fibers" and "U-fi-
bers" of Peters 1987, 1992a) . Identifications o f
different lines were based only on the morphol -
ogy and location of the lines, so homologies are
thus tentative . A straight or nearly straight fiber
running in a pair (except when two separate cri -
bellate threads were laid by a spider with a di -
vided cribellum) in the midst of a mat of cri-
bellum fibers was termed an axial fiber; curled
fibers always in the midst of cribellum fibers, als o
generally in pairs, were termed reserve warp . In-
formation on the glandular origins of different
fibers, the spigots from which they emerge (e . g. .
Peters 1984, 1992a), and their chemical prop-
erties will be needed to establish more certai n
homologies.

Voucher specimens of the spiders are depot
ited in the Museum of Comparative Zoology
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Figures 5—9 .—Mature female Kukulcania hibernalis : 5, a pair of highly coiled primary reserve warp line s
(RW1) and cribellum silk (barely visible) near a foundation line (F) to which they were attached (light microscope) ;
6, scalloped edge of mass of cribellum silk (arrow), primary reserve warp (RW1) and foundation line (F) compose d
of multiple fibers (light microscope); 7, "crinkled" axial line (AX) and primary reserve warp (RW1) in mass of
cribellum fibrils (barely visible) (light microscope) ; 8, flattened primary reserve warp line (RW1) (note variatio n
in diameter) and thinner secondary reserve warp lines (RW2) in mass of cribellum fibrils (TEM); 9, flattened
cribellum fibrils (note that apparent diameters change where lines are folded (TEM) . Scale lines are, respectively ,
200µ, 10Oµ, l0µ , Sµ , and 0.3a.

Cambridge, Massachusetts 02138 . Collection
sites for different genera were the following: Hy-
pochilus - near Cullowhee, North Carolina, USA ;
Kulkania, Tengella, and Dictyna - near San An-
tonio de Escazu, Costa Rica ; Badumna and Par-
amatachia - Lamington National Park, SW of
Brisbane, Queensland, Australia ; Avella and Ma-
hura - Cape Tribulation, N of Cairns, Queens -
land, Australia; and Stiphidium - Gilles Highway
W of Cairns near maximum elevation on way t o
Atherton, Queensland, Australia .

RESULTS

Table 1 summarizes our observations and thos e
of other authors . More detailed descriptions of
the species we studied follow .

Hypochilus thorelli Marx (Hypochilidae) —
Observations with the light microscope revealed
a more or less cylindrical mass of cribellum silk
associated with a pair of linear axial fibers plu s
a pair of moderately coiled reserve-warp fiber s
(Figs . 1, 2) . Additional, thinner secondary re-
serve warp fibers were revealed with the TE M
(Fig. 3) . The fibrils of cribellum silk were ap-
parently cylindrical, and lacked nodules (Fig . 4) .

Kukulcania hibernalis (Hentz) (Filistatidae) —
The band of cribellate silk was laid along a thick
foundation line (Figs . 5, 6), to which it was at-
tached periodically . The foundation line had
multiple grooves (Fig . 6), suggesting it was com-
posed of many different strands . The silk of the
foundation line was unusual in being relativel y
rigid: when cut, the line did not sag or fold . The
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Figures 10—11 . —Mature female Tengella radiata : 10, flat mass of cribellum fibrils (barely visible), with a pai r
of straight axial lines (AX) and a pair of folded reserve warp lines (RW) (light microscope) ; 11, cylindrical
cribellum fibrils with nodules (TEM) . Scale lines are, respectively, 100g, and 0 .5g .

foundation line was laid as the spider moved
away from its retreat, and the cribellum silk an d
associated fibers were laid during the return tri p
(Eberhard 1988) . In some places the band of cri -
bellate silk was more or less linear (Fig . 5), but
more often it was piled up or coiled on itself,
forming irregular loops .

The internal structure of the band was com-
plex . Under the light microscope a more or les s
looped and folded pair of helical fibers was seen
(the helix is relatively extended in Fig . 5), with
the mass of cribellum fibrils visible as a faint
cloud (Figs . 5-7) . Within each helix, a relatively
thick, smooth primary reserve warp fiber was
curled in a highly regular fashion that included
a series of short, more or less straight basal por-
tions alternating with longer loops (Figs . 5, 7) .
Each loop was oriented in nearly the same di-
rection as the previous one. The axial line, which
was thinner and apparently somewhat crinkled ,
ran near and approximately parallel to the straight
basal portions of the loops of the primary reserv e
warp fiber (Fig . 7) .

Under the TEM, the primary reserve warp
proved to be flattened and ribbon-like, rathe r
than cylindrical (Fig. 8) . The axial line was seen

to consist of a pair of lines, with the "crinkles "
consisting of portions where one fiber was curle d
helically around the other . Additional, finer sec-
ondary reserve warp fibers (number uncertain )
were folded loosely and irregularly in the area of
the loops of primary reserve warp (Fig . 8). The
cribellum fibrils were smooth and ribbon-like ,
rather than cylindrical (Fig . 9) . They lacked th e
nodules seen in the silk of many other specie s
(Table 1) .

Tengella radiata (Kulczynski) (Tengellidae) —
A more or less flat mat of cribellum silk lay o n
or around a pair of axial fibers plus a pair o f
kinked or somewhat curled reserve-warp fibers
(Fig . 10) which were produced at the same time
as the cribellum silk . The edges of the mat were
not regularly scalloped, and the reserve warp fi -
bers appeared to be cylindrical. The mat twisted
from side to side as a relatively rigid unit in weak
air currents under the light microscope. The fi-
brils of cribellate silk were apparently cylindrical ,
with many small nodules scattered along thei r
lengths (Fig. 11).

Dictyna sp . (Dictynidae)—The cribellum silk
formed a relatively flat mat with regularly scal -
loped edges (Fig. 12) . In some cases the mat was
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Figures 12—14 .—Mature female Dictyna sp . : 12, mat of cribellum silk with scalloped edges (arrow) laid alon g
a foundation line (light microscope) ; 13, cribellum fibrils clumped together in places to form cables (arrow )
(TEM) ; 14, cylindrical cribellum fibrils with nodules (TEM) . Scale lines are, respectively, l00µ, lµ, and lµ.

laid on a relatively thick foundation line (Fig .
12), while in others there was no foundation line.
Careful searches using the TEM showed that there
were neither axial nor reserve warp lines . Under
the light microscope a pair of darker lines were
sometimes visible in the central portion of th e
mat of cribellum fibers, but these presumably
corresponded to cables composed of accumula-
tions of cribellum fibrils (Fig . 13) . Cribellum fi-
brils were cylindrical, with nodules along their
length (Fig . 14) .

Stiphidium sp. (Stiphidiidae)—The non-pla-
nar mass of cribellum fibrils was not laid along
a foundation line (Fig. 15), and did not have a
regularly scalloped outline (Fig . 16) . Associated
with the cribellum silk were a pair of straight ,
apparently cylindrical axial fibers and a pair o f
curled, cylindrical reserve warp fibers (Figs . 15 ,
16) . The cylindrical reserve warp was curled
tightly for short stretches which alternated with
stretches of similar lengths in which it was rel-
atively uncurled (Figs . 15-17) . The cribellum fi-
brils were cylindrical, with nodules (Fig . 18) .

Badumna sp . (Desidae)—In places two mats
of cribellate silk ran in close parallel, presumably
the product of the divided cribellum; in other

places they were farther apart . The lateral out -
lines of mats were not regularly scalloped (Fig .
19) . Each mat had a straight, relatively thin axia l
fiber, and a cylindrical reserve warp fiber in which
the degree of coiling varied (Figs. 19-21) . Th e
cribellum fibrils were cylindrical, with nodule s
(Fig . 22) .

Paramatachia decorata (Dalmas) (Desidae) —
The lateral outlines of mats of cribellum silk wer e
often regularly scalloped, although the thicken-
ings ("puffs") often did not occur at the same
point on either side of the mat (Fig. 23) . Mats
of cribellate silk were usually but not always as-
sociated with foundation lines (Figs . 24, 25) .
When viewed with the light microscope a pair
of straight axial fibers seemed to be present (Fig.
23), but no reserve warp fibers were seen . In som e
places the mat of cribellum fibrils was coiled o n
the axial line . Neither axial nor reserve warp
fibers were found using the TEM, however . Ove r
short stretches, cribellum fibrils came together
to form cables which gave the false impression
of thicker fibers (Fig . 25), but these differed from
the axial fibers seen in the light microscope in
being only relatively short . It appears that axial
fibers were absent from some samples, but it is
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Figures 15-18 .-Mature female Stiphidium sp. : 15, straight axial line (AX) and reserve warp line (RW) with
alternating highly curled and straighter regions (light microscope) ; 16, same, showing non-scalloped edge of mat
of cribellum fibrils (arrow) (light microscope) ; 17, curled cylindrical reserve warp line (RW) with cribellu m
fibrils, some of which clump together to form cables (arrow) (TEM); 18, cylindrical cribellum fibrils with nodule s
(TEM) . Scale lines are, respectively, l00µ, 100p, 5p, and 0 .5p .

uncertain whether they were present in others .
The cribellum fibrils were cylindrical, with nod-
ules (Fig. 26).

Mahura sp . (Amaurobiidae)—Many mats of
cribellate silk in the sheet of this spider's web
were composed of parallel double bands, pre-
sumably due to the divided cribellum . In con-
trast, mats of cribellate silk in the mesh abov e
the sheet were usually single . Each cribellate mat
collected from the sheet had a single cylindrica l
reserve warp fiber, which was alternately tightly
coiled and relatively uncoiled (Fig. 27) . Axial
fibers were not clearly visible in the light micro -
scope (appearing to be present only in shor t
stretches), and no axial lines were seen with th e
TEM. In places cribellum fibrils came together
to form cables, and presumably these were the
"axial fibers" seen in the light microscope . Cri-
bellum fibrils were cylindrical, with nodules (Fig .
28) .

Avella sp. (Deinopidae)—The lateral margins

of each mat of cribellum silk were strongly scal-
loped (Fig. 29). A pair of linear axial fibers and
a pair of loosely coiled, cylindrical reserve war p
fibers ran through the central portion of the mass
(Figs . 29, 30) . Cribellum fibrils were cylindrical,
with nodules (Fig . 31) .

DISCUSSION

The data available to date suggest that some
ultrastructural characteristics of cribellate cap-
ture silk are relatively constant within and be-
tween taxa (Table 1) . The consistency is es-
pecially clear in the cylinder plus nodule structure
of cribellum fibrils, and the lack of reserve warp
fibers in the best studied family, Uloboridae . It
should be born in mind that the changes in cri-
bellum fibril morphology in the TEM (electron
bombardment in a vacuum) are not known . Thus
the morphology of fibrils described here may dif-
fer from that of fibers under normal conditions .
The tentative nature of homologies of the lines
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Figures 19—22 .—Mature female Badumna sp . : 19, mat of cribellum fibrils with irregularly scalloped edges ,
axial lines (AX), and curled reserve warp line (light microscope) ; 20, pair of axial lines (AX) and pair of alternately
curled and uncurled reserve warp lines (RW), with a more regularly scalloped mat of cribellum fibrils (light
microscope) ; 21, curled cylindrical reserve warp line (RW) and straight axial line (AX) with cribellum fibril s
(TEM) ; 22, cylindrical cribellum fibrils with nodules (TEM) . Scale lines are, respectively, 150µ, 100µ, 2µ, an d
0 .5a .

associated with cribellum silk should also be kept
in mind .

While much more data need to be gathered t o
determine whether the patterns of distribution
will hold up, it may be useful to attempt a ten-
tative comparative analysis . If one superimposes
the data on silk ultrastructure on a recently pro -
posed pylogeny of cribellate spiders (Coddington
& Levi 1991), several hypotheses result (Fig . 32):
1 . Ribbon-like cribellum fibrils are a derive d
character of filistatids (Filistata, Kukulcania) . 2 .
Nodules on cribellum fibrils are a synapomorph y
linking all cribellates other than filistatids and
hypochilids ; 3 . Lack of "reserve-warp" lines is a
derived character, present in the single dictynid,
one of the two desids, and all of the 12 uloborids .
Since several details of web construction behav-
ior link Uloboridae and Deinopidae (which has
reserve warp fibers), the loss either occurred in-
dependently in Uloboridae and Dictynidae (Fig .
32) (with subsequent reacquisition of both axial
and reserve warp lines in Badumna and loss of

axial fibers in Mahura), or dictynoids are the
sister group of uloborids + deinopids, and dei-
nopids andBadumna secondarily re-acquired re-
serve warp lines (with a loss of axial lines i n
dictynoids and Mahura) .

An additional character, noted by other au-
thors, is the scalloped outline of the mass of cri-
bellate silk ("puffs"), which may unite Ulobor-
idae, Deinopidae, Dictynidae and the desi d
Paramatachia (in at least some uloborids, a puff
is actually shaped more nearly like a twisted to-
rus) . This character may be somewhat less useful ,
however, since : 1) intermediate degrees of"scal-
loping" occur (e . g., Figs . 12, 20, 23), and it i s
not clear how regular scalloping must be to b e
condsidered a puff; and 2) some uloborid mats
are only barely scalloped (Peters 1984, 1987) . We
were unable to confirm the presence of paracri-
bellar fibrils (Peters 1984, 1987) in any of our
species (unless they correspond to the "cables"
of cribellum fibrils seen in Dictyna, Paramata-
chia, and Mahura) .
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Figures 23-26 .-Mature female Paramatachia decorata : 23, mat of cribellum silk with scalloped edges (arrow)
(apparent axial lines are slightly out of focus except at right and left margens) (light microscope) ; 24, foundation
line (F) to which cribellum silk was attached (note multiple fibers) (TEM); 25, foundation line with cables formed
by multiple cribellum fibrils (arrow) (TEM) ; 26, cylindrical cribellum fibrils with nodules (TEM) . Scale lines
are, respectively, l00µ, 5g, 51.t, and 0 .5g .

The positions of the fibers associated with cri-
bellum silk help clarify some details of combin g
behavior. Assuming that spider silk is polymer-
ized by being pulled (e . g ., Foelix 1982), the pres -
ence of highly curled reserve warp fibers, whic h
are presumably pulled out by strokes of the cal-
amistrum and then fold or coil upon themselves ,
suggests that cribellum silk per se is piled on itself
in the sticky threads of all species with curle d
reserve warp fibers . In some cases the tendency
of reserve warp fibers to curl up may even caus e
clumping to occur. For instance, the secondary
helices of Filistata and Kukulcania may result
from curling of the axial fibers and/or the pri-
mary reserve warp lines . In species such as Ten-
gella radiata, where the reserve warp fibers curl
less, they appear to have little influence on th e
shape of the mass of cribellum fibrils. In both
these groups (as well as in Stegodyphus - see Eber-
hard 1988), the spiders do not pull the cribellat e
silk threads taut in their webs . Rather, silk ac-
cumulates and sags free behind the spider as it
is combed from the cribellum with the calam-
istrum. The thread is under no tension other than

that resulting from its own weight and frictio n
with air currents, and is actually often piled on
itself in Kukulcania and Stegodyphus webs . Pre -
sumably when cribellum fibrils accumulate i n
this way, the force of adhesion is increased b y
bringing more silk surface into contact with the
prey (Opel]. 1990). The effective length of the silk
is probably also increased, making escape mor e
difficult when the prey attempts to pull away.

Many authors have thought that each of the
puffs in a mass of cribellum fibrils is produced
by a single combing movement of the calamis-
trum (Eberhard & Langer 1969 ; Friedrich &
Langer 1969 ; Opell 1979 ; Peters 1992c), but Pe -
ters (1984) attributed puffs to rhythmic clamping
movements of the posterior spinnerets. The pres-
ence of many helical turns of reserve warp fibers
between each pair of puffs in the sticky thread s
of Deinopus sp . and Deinopus subrufus (Kull-
mann 1975 ; Peters 1992c), and Avella sp. (thi s
study) indicates that the second hypothesis i s
more likely . The combing movement necessary
to produce a puff would be too short to pull ou t
such lengths of reserve warp fiber .
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Figures 27—28 .—Mature female Mahura sp . : 27, reserve warp line (RW) which is more tightly curled in som e
places than others (TEM) ; 28, cylindrical cribellum fibrils with nodules (TEM) . Scale lines are, respectively, 2 µ
and 0 .5a .

Similar reasoning indicates that combing longer than the axial fibers . Probably many axial
movements of the calamistrum in many species fibers are pulled out as the spider moves away
are not responsible for pulling out axial fibers . from the last attachment point . This mechanism
The looped and tangled cribellar fibrils (presum- is not possible, however, in spiders such as K.
ably pulled by the calamistrum) are substantially hibernalis and Stegodyphus gregalis, which do

Figures 29—31 .—Mature female Avella sp . : 29, highly scalloped mat of cribellum silk with pair of axial line s
(AX) and reserve warp lines (RW) (light microscope) ; 30, axial line (AX) with pair of reserve warp lines (RW )
and cribellum fibrils (TEM) ; 31, cylindrical cribellum fibrils with nodules (TEM) . Scale lines are, respectively ,
l00µ, 5µ, and 0.5µ.
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HYPOCHILIDAE
flattened cribellum fibrils

	

FILISTATIDAE

OECOBIIDAE

ERESIDAE

DICTYNIDA E

AMAUROBIIDA E

TENGELLIDA E

DEINOPIDA E

ULOBORIDA E

Figure 32 . —Phylogeny of the families in which the ultrastructure of cribellum silk and associated lines ha s
been studied (after Coddington & Levi 1991), with data on silk morphology (Table 1) superimposed to sho w
possible transitions .

axial lines
reserve warp
lack nodule s
cylindrical cribellum fibrils

not move forward during most of the time cri-
bellum silk is being combed (Eberhard 1988 ; see
also Opell 1990 on Miagrammopes) . It is no t
clear how axial fibers are pulled from the spin-
nerets in these species .

Comstock (1948) speculated that the helix o f
threads (he saw them as loops) of Kukulcania
hibernalis (under the name Filistata) result from
movements of the spinnerets, while the very reg-
ular loops of the primary reserve warp are mad e
by combing movements of the calamistrum .
Given the much longer length of the secondary
reserve warp fibers, however, it seems more like-
ly that their irregular folding may be associate d
with the combing movements of the calamis-
trum. The highly ordered folding of the primary
reserve warp and the helical coiling of the swath
itself is presumably due to their intrinsic curli-
ness (but see below), and the fact that spider
moves forward very little as it combs out silk ,
so that cribellate silk "piles up" between attach-
ments to the foundation line .

Comstock also thought that the axial fibers o f
K. hibernalis are highly elastic, stretching "to fift y
times their first length" . We were unable to con-
firm this . Instead, when a swath was pulled unde r
the light microscope, a process of sequential

breaking occurred (possibly of the axial fibers),
bringing the reserve warp fibers under tension a s
described by Kullmann (1975) for Stegodyphus .
As the swath was slowly pulled, it extended : the
primary reserve warp began to unfold, but did
so unevenly, in little starts . It became completely
unfolded in some places before others . Eventu-
ally the primary reserve warp became completely
extended. If the tension was then relaxed, the
reserve warp remained extended, and did no t
recoil to its original position (thus failing to show
the intrinsic curliness postulated above) . Further
extension caused the primary reserve warp fibe r
to break, and with that the entire thread usually
broke. Thus the finer, secondary reserve warp
fibers of K. hibernalis apparently serve in ad-
hesion (of the cribellum silk to the primary re -
serve warp? to the prey?) rather than to increas e
the tensile strength and elongation of the arra y
of lines as do the secondary reserve warp fibers
of Stegodyphus (Kullmann 1975). Presumabl y
the extension Comstock observed was the exten-
sion of the entire array of cribellum silk and as-
sociated fibers.

The most complex and distinctive arrays o f
cribellum silk and associated fibers are those of
filistatids . These may show intergeneric differ-
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ences. Lehmensick & Kullmann (1956) describ e
a two-part mass of adhesive silk in Filistata in-
sidiatrix, laid in small accumulations on a pre-
viously built foundation line, just as in K. hib-
ernalis . Although they did not mention that eac h
of the two parts has a helical form, this seems t o
be the case in the light microscope photo of Pe-
ters (1987) of the same species . Lehmensick &
Kullmann also noted a pair of axial fibers, whic h
seem (in their light microscope photo, plate 2 ,
fig. 3) to be thicker and straighter than those of
K. hibernalis . The fiber labelled axial line in their
TEM micrograph (plate 2, fig . 4) may, however ,
may not correspond to the light microscope axial
fiber: it does not run through the mass of cri-
bellum fibers and curled reserve-warp fibers ; and
a thinner fiber, which is more appropiately lo-
cated and which resembles the axial fiber of K.
hibernalis, is unlabelled . Perhaps the line the y
labelled as an axial line in their TEM micrograph
was a foundation line.

Also unique to filistatids is the non-cylindrical ,
ribbon-like form of the primary reserve warp
fiber . Judging by the flattened tips of the para-
cribellar spigots on the posterior median spin-
nerets of K. hibernalis (figs . 56—58 in Platnick et
al . 1991), these spigots may be the source of pri -
mary reserve warp fibers . This speculation is sup-
ported by the existence of a somewhat similar ,
slit-shaped opening of the "major ampullate glan d
spigot" on the anterior lateral spinneret of Lox-
osceles rufescens and L. reclusa (Platnick et al.
1991), and the fact that L. rufescens also makes
a wide, ribbon-like band of silk (Lehmensick &
Kullmann 1956 ; Kullmann 1975). It is in ap-
parent conflict with the lack of paracribellar spig -
ots in hypochilids, eresids, and Tengella (Plat -
nick et al. 1991). Peters (1992a) has established
that reserve warp fibers are secreted from spigot s
on the posterior median spinnerets in Stegody-
phus . Further work is needed to establish whic h
spigots produce these and other fibers.

The band-like cribellum fibrils ofK. hibernalis
may be associated with their bladder-shaped
"claviform" cribellar spigots (fig. 52 of Platnick
et al. 1991), which are quite different from th e
more sharply-tipped "strobilate" spigots known
for other cribellates (Kullmann 1975 ; Opell 1979 ;
Peters 1984, 1987, 1992 ; Platnick et al . 1991) .
A second possible silk-spigot association, be-
tween the presence of nodules on cribellum fibrils
and nodule-like expansions on the cribellu m
spigots, is apparently ruled out, however, by the
presence of expansions on the spigots of Hypo-
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