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Introduction

A dimensionless approach to the study of life-history

evolution has been applied to a wide variety of relation-

ships among reproductive and demographic variables

(e.g. Juergens & Prothero, 1987; Charnov & Berrigan,

1990; Shine & Charnov, 1992; Charnov, 1993; Prothero,

1993; Morand, 1996; Gemmill et al., 1999; Charnov,

2000; He & Stewart, 2001; Jones & MacLarnon, 2001;

Allsop & West, 2003a,b; Williams & Shertzer, 2003). The

idea is that certain relationships between life-history

characteristics are invariant with respect to transforma-

tions across a variety of taxa and that such patterns of

invariants and deviations from them can tell us some-

thing interesting about the organizing principles of life-

history evolution (Charnov, 1993). As most commonly

applied, two traits of interest are examined for the shape

of their scaling relationship across species. If the rela-

tionship is linear then the ratio of the two is invariant to

transformations of the other features that may also vary

across the same set of taxa. Charnov (1993) gives the

example that the regression of clutch size on mortality

rate gives a linear relationship across 14 bird species. This

implies that the dimensionless ratio of the two changes

little despite considerable variation in body size and other

biological features of the species sampled.

Studies looking for life-history invariants have used

ordinary least squares (OLS) [and sometimes reduced

major axis (RMA) or major axis] linear regressions of

log-transformed data to discover invariant relationships

(Charnov, 1993; Jones&MacLarnon, 2001;Allsop&West,

2003a,b). An estimated slope of 1 on the log-transformed

data demonstrates a proportional relationship between the

variables while slopes different from 1 show nonlinear

relationship. The level of correlation of the variables (r2) is
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Abstract

A dimensionless approach to the study of life-history evolution has been

applied to a wide variety of variables in the search for life-history invariants.

This approach usually employs ordinary least squares (OLS) regressions of log-

transformed data. In several well-studied combinations of variables the range

of values of one parameter is bounded or limited by the value of the other. In

this situation, the null hypothesis normally applied to regression analysis is not

appropriate. We generate the null expectations and confidence intervals (CI)

for OLS and reduced major axis (RMA) regressions using random variables

that are bounded in this way. Comparisons of these CI show that, for log-

transformed data, the patterns generated by random data and those predicted

by life history invariant theory often could not be distinguished because both

predict a slope of 1. We recommend that tests based on the putative invariant

ratios and not the correlations between the two variables be used in the

exploration of life-history invariants using bounded data. Because empirical

data are often not normally distributed randomization test may be more

appropriate than standard statistical tests.
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considered to reflect the strength or robustness of the

hypothesized invariance with respect to variation in other

demographic parameters. However guidelines on how

much variation is acceptable in ‘invariant’ has not been

explicitly addressed to our knowledge (see Charnov, 1993,

p. 5). Those studies interested in the actual value of the

ratio between the variables consider either the average of

the observed ratios or the slope of the regression as the

estimate of the value (e.g. Charnov & Berrigan, 1991;

Allsop & West, 2003a).

This regression approach is useful when the assump-

tions of linear regression analyses are met and when the

appropriate null hypothesis is tested. It has been widely

applied to a variety of questions in evolutionary ecology

and fisheries science (e.g. Juergens & Prothero, 1987;

Shine & Charnov, 1992; Charnov, 1993; Morand, 1996;

Gemmill et al., 1999; Charnov, 2000; He & Stewart,

2001). However, there are several cases of proposed life-

history invariants where the range of one variable is

bounded by the value of the other and therefore the null

hypothesis normally used for regressions of two unboun-

ded variables is no longer appropriate. Two proposed

invariant relationships relating to sex change (1) Age at

maturity vs. age at sex change (Agemat/Age50) and (2)

size at sex change vs. maximum size (L50/Lmax) and two

other invariant relationships (3) age (or size) at maturity

vs. maximum age (or size) (Agemat/Agemax) and (4)

weaning weight vs. maternal weight are bounded in this

way. In all of these examples one of the variables cannot

exceed the other (e.g. age at maturity cannot exceed

maximum age), so Y < X. It is intuitively reasonable to

expect that regressions on randomly distributed data

subject to the constraint Y < X would result in a nonzero

slope. Therefore, the conclusions that can be drawn on

the basis of hypothesis testing using results of regression

analysis, as normally applied to slopes (as implemented

in Shine & Charnov, 1992; Charnov, 1993; Charnov &

Skúladóttir, 2000; Allsop & West, 2003a,b) are limited.

Simulations and empirical data

We took a simulation approach to demonstrate the

random expectations of regression analysis of data subject

to the constraint Y < X. We used a program written in R

(Version 1.9.0) to generate 5000 replicates each of 15, 25,

50, 75 and 100 observations of X and Y randomly sampled

from a normal distribution but subject to the constraint of

Y < X. We calculated two-tailed 95% confidence intervals

(CI) for the slope and r2 from ordinary least squares and

reduced major axis regression analyses of raw data and on

the log-transformed data (Fig. 1).

We re-analysed seven datasets from the literature

(Table 1; Loehle, 1988; Shine & Charnov, 1992; Charnov

& Skúladóttir, 2000; Allsop & West, 2003a,b) to compare

the results from OLS and RMA regressions of raw and log-

transformed data to the CI generated from random data.

Because X and Y are constrained, the slope of regressions

of bounded data is dependent on both the mean and

standard deviation (SD) of both variables (Fig. 2). This

effect is particularly pronounced when the range of the Y

variable covers only a small part of the range of the X

values, or when the ranges of the two variables do not

overlap (e.g. the data from Loehle, 1988). Therefore, we

used re-sampling techniques individually tailored for

each dataset to test explicit hypotheses.

To determine if the slopes are different from those

generated by random data we generated a random

expectation for each empirical dataset, conforming to

the assumptions of regression analysis by (1) Randomly

drawing a number within the range of the empirical X

data, (2) randomly drawing a number from a normal

distribution between the minimum Y value of the

empirical data and the selected X value, (3) repeating

this to generate a dataset the size of the empirical dataset

and (4) repeating this 10 000 times, calculating the

regression statistics each time.

To test the significance of regression slopes (i.e. null

hypothesis slope ¼ 0) and to test for a slope of 1, we used

a re-sampling method outline by Manly (1997). One-

tailed t-tests were also used to test for a slope of 1

(following McArdle, 1988 for RMA regressions) for

comparison with previous studies. Finally, CI of the

slopes was generated using standard bootstrapping.

We tested for ‘invariance’ of the Y/X ratio by determin-

ing if the empirical values are less variable than expected at

random. The mean and SD were calculated and compared

Fig. 1 Scatter plots showing one randomly

generated dataset bounded by Y < X (the

grey area). (a) The raw data and (b) the same

data after log-transformation. The OLS and

RMA estimates for these data are drawn

through the points. Raw data OLS (slope ¼
0.47, intercept ¼ 10.9, r2 ¼ 0.42) and RMA

(slope ¼ 0.73). Log-transformed data OLS

(slope ¼ 1.02, intercept ¼ )0.53, r2 ¼ 0.53)

and RMA (slope ¼ 1.40).
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to the CI of themean and SD generated from both random

data generated as described above and from randomizedY/

X datasets generated by re-sampling the empirical X and Y

values independently, subject to Y < X.

Results

Linear regression analysis of randomly generated data

shows that the expected OLS slope is 0.50 for the raw

data and is close to 1 (0.99) for the log-transformed data.

The expected RMA slopes are 0.76 for raw data and 1.4

for log-transformed data. The 95% CI of the OLS slope of

log-transformed random data and the 95% CI for RMA

slopes with small sample sizes both include 1. Because

both processes are expected to produce log-transformed

data with a slope of 1 under the constraint of Y < X,

standard regression analysis cannot be used to distinguish

between patterns of data produced by underlying organ-

izing principles of life history evolution and those

generated by random processes. In addition, the average

randomly generated r2 values were 0.43 and 0.5 but

could be as high as 0.7 or 0.8. Results from uniformly,

normally, log-normally and exponentially distributed

data were similar.

Hypothesis testing using the empirical data reported in

previously published papers are presented in Tables 1

and 2. The 95% CI of the slope of the log-transformed

dataset-specific random data include 1 for five of the

seven OLS regressions and seven of the seven RMA

regressions (Table 1), again supporting the idea that the

predictions of life history invariants cannot be distin-

guished from randomly generated data. The same five

Table 1 Regression statistics from analysis of random data under the constraint Y < X and from published studies of empirical data with the

same constraint.

Taxon

Sample

size

OLS slope

(95% CI)�

RMA slope

(95% CI)� r2 (95% CI) References

Raw data

Random data 45 0.50 (0.39, 0.61) 0.60 (0.50, 0.72) 0.69 (0.50, 0.84) Shine & Charnov (1992)

Agematurity/Agemax Squamates 0.64 0.63 0.96

Random data 77 0.50 (0.42, 0.58) 0.60 (0.52, 0.68) 0.70 (0.56, 0.81) Allsop & West (2003a))

L50/Lmax Animals 0.81 0.82 0.98

Random data 52 0.50 (0.40, 0.60) 0.60 (0.51, 0.70) 0.70 (0.53, 0.83) Allsop & West (2003b))

L50/Lmax Fishes 0.85 0.86 0.99

Random data 14 0.50 (0.29, 0.71) 0.61 (0.42, 0.84) 0.69 (0.31, 0.92) Allsop & West (2003b))

Agematurity/Age50 Fishes 0.34 0.36 0.82

Random data 35 0.50 (0.35, 0.64) 0.64 (0.51, 0.79) 0.62 (0.38, 0.80) Loehle (1988)

Agemax/Agematurity Angiosperm trees 0.06 0.11 0.29

Random data 43 0.50 (0.38, 0.62) 0.61 (0.50, 0.73) 0.67 (0.47, 0.82) Loehle (1988)

Agemax/Agematurity Gymnosperm trees 0.018 0.04 0.27

Random data 21 0.50 (0.34, 0.66) 0.60 (0.45, 0.77) 0.70 (0.41, 0.89) Charnov & Skúladóttir (2000)

L50/Lmax Shrimp 0.83 0.86 0.92

Log-transformed

Random data 45 0.85 (0.74, 0.97) 0.97 (0.85, 1.13) 0.79 (0.56, 0.90) Shine & Charnov (1992)

Agematurity/Agemax Squamates 0.94 (0.91,0.98)* 0.95 (0.91,0.98)*,� 0.99

Random data 77 0.99 (0.90, 1.09) 1.08 (0.98, 1.22) 0.84 (0.69, 0.93) Allsop & West (2003a))

L50/Lmax Animals 1.05 (1.02,1.08)*,� 1.06 (1.03,1.09)*,� 0.98

Random data 52 0.92 (0.81, 1.03) 1.02 (0.91, 1.19) 0.81 (0.61, 0.92) Allsop & West (2003b))

L50/Lmax Fishes 1.06 (1.01,1.12)*,� 1.08 (1.02,1.14)*,� 0.97

Random data 14 0.88 (0.61, 1.16) 1.03 (0.80, 1.44) 0.76 (0.35, 0.94) Allsop & West (2003b))

Agematurity/Age50 Fishes 0.78 (0.59,0.91)*,� 0.85 (0.71,0.99)*,� 0.87

Random data 35 0.95 (0.71, 1.18) 1.19 (0.96, 1.52) 0.66 (0.35, 0.84) Loehle (1988)

Agematurity/Agemax Angiosperm trees 0.43 (0.18, 0.71)* 0.89 (0.66,1.17)*,�,§ 0.25

Random data 43 0.98 (0.81, 1.16) 1.13 (0.97, 1.39) 0.76 (0.5, 0.89) Loehle (1988)

Agematurity/Agemax Gymnosperm trees 0.29 (0.08, 0.48)* 0.71 (0.56, 0.95)* 0.18

Random data 21 0.56 (0.39, 0.71) 0.66 (0.51, 0.84) 0.71 (0.44, 0.90) Charnov & Skúladóttir (2000)

L50/Lmax Shrimp 1.02 (0.80,1.22)*,�,§ 1.08 (0.86, 1.26)*,§ 0.90

Bootstrap test of significance of the regression obtained for testing beta ¼ 0 by randomly combining the observed X and Y values from each

empirical dataset as outlined by Manly (1997, p. 149).

Slopes that are significantly different from 0 are indicated in bold.

*Slope of log-transformed data not significantly different from 1 using bootstrap test for slope as outlined by Manly (1997, p. 149).

�Random data from a normal distribution.

�Slope of log-transformed data not significantly different from 1 using a one-tailed t-test.

§Bootstrap CI on the slope includes 1.
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datasets had significant nonzero slopes as assessed by the

Manly bootstrap test. The two slopes that are not

significant could also not be distinguished from 1,

indicating that the bootstrap test had low power in these

cases. Four of the datasets had slopes that could not be

distinguished from 1 using either the bootstrap CI or

t-tests (Table 1). Four of these datasets have r2 values

that are significantly greater than the random expecta-

tion and the two that do not have significant slopes have

r2 values that are smaller than expected at random.

Standard linear regressions of these data were originally

interpreted as supporting the linear relationship between

variables that is predicted by life history invariant theory

(Shine & Charnov, 1992; Charnov & Skúladóttir, 2000;

Allsop & West, 2003a,b) and they still cannot be

distinguished from these predictions.

Fig. 2 Scatter plots showing the dependence of the 97.5% CI of the slopes of OLS regressions fitted to the log-transformed data on the

mean and SD of the X and Y variables when Y is bounded by X. (a) CI vs. the co-efficient of variation (mean of X/SD of X) of variable X (Cx)

and (b) CI vs. the co-efficient of variation of variable Y (Cy). Each of the 3000 points was calculated from 1000 simulations of 100

constrained Y < X data values, drawn from normal distributions. The mean value of X was defined as the upper limit of the values of Y, in

order to simulate partial overlapping of both distributions.

Table 2 Means and SD of ratios of bounded data from bootstrap re-sampling and empirical data.

Data set

Sample

size

L50/Lmax

ReferencesMean (CI) Mean SD (CI)

Random data 45 0.53 (0.47, 0.59) 0.16 (0.13, 0.19) This study

Random bootstrapped data 0.44 (0.33, 0.56) 0.30 (0.26, 0.34) This study

Agematurity/Agemax 0.72*,� 0.090*,� Shine & Charnov (1992)

Random data 77 0.50 (0.45, 0.55) 0.16 (0.14, 0.19) This study

Random bootstrapped data 0.32 (0.24, 0.39) 0.28 (0.23, 0.32) This study

L50/Lmax 0.74*,� 0.13*,� Allsop & West (2003a)

Random data 52 0.51 (0.45, 0.57) 0.16 (0.13, 0.19) This study

Random bootstrapped data 0.44 (0.35, 0.53) 0.27 (0.23, 0.31) This study

L50/Lmax 0.78*,� 0.11*,� Allsop & West (2003b)

Random data 14 0.53 (0.42, 0.63) 0.15 (0.10, 0.22) This study

Random bootstrapped data 0.34 (0.21, 0.48) 0.20 (0.11, 0.29) This study

Agematurity/Age50 0.42� 0.13 Allsop & West (2003b)

Random data 35 0.51 (0.45, 0.58) 0.16 (0.12, 0.20) This study

Random bootstrapped data 0.16 (0.11, 0.22) 0.11 (0.06, 0.17) This study

Agematurity/Agemax 0.14� 0.071� Loehle (1988)

Random data 43 0.50 (0.44, 0.57) 0.16 (0.13, 0.20) This study

Random bootstrapped data 0.11 (0.07, 0.15) 0.09 (0.05, 0.14) This study

Agematurity/Agemax 0.09� 0.062� Loehle (1988)

Random data 21 0.87 (0.84, 0.90) 0.07 (0.05, 0.09) This study

Random bootstrapped data 0.87 (0.82, 0.91) 0.08 (0.05, 0.10) This study

L50/Lmax 0.98*,� 0.009*,� Charnov & Skúladóttir (2000)

*Falls outside the two-tailed 95% CI generated by creating ratios with Y < X from subsampling the original X and Y values as outlined by Manly

(1997). �Falls outside the two-tailed 95% CI generated by random data with Y < X. Bold values are significantly different from random

expectations using both tests.
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In the case of the actual ratios, the expected patterns

generated from the ‘invariant’ hypothesis and from

random processes are different. The invariant hypothesis

predicts that the Y/X values will have less variation than

expected at random. Examining the empirical ratios

shows that four of the seven datasets have significantly

larger average values and significantly smaller SD than

expected from randomized data (Table 2). This result is

supported by both randomization methods. These are the

same four datasets that show slopes indistinguishable

from 1. In combination these two results (log-trans-

formed slope ¼ 1 and variance less than expected)

support the hypothesis that life-history invariant related

processes rather than random processes contributed to

these patterns in the data.

Discussion

Researchers looking for life-history invariants interpret

regression analyses as follows: (1) the slope of the log-

transformed data reflects the shape of the relationship

between the two variables and is 1 if the relationship is

an invariant, (2) the correlation (r2) shows the robust-

ness or strength of the invariance if the relationship is

linear or the strength of allometry if the relationship is

not linear and (3) the slope of the raw data or the average

of the ratios give the value of the invariant. Our

examination of randomly generated data shows that

each of these steps should be taken cautiously when

analysing bounded data.

Many previous studies using bounded data have used

OLS regression of log-transformed data to test for a slope

of 1 (e.g. Shine & Charnov, 1992; Jones & MacLarnon,

2001; Allsop & West, 2003a,b). Because this approach

cannot distinguish a slope of 1 from the random

expectation (i.e. the random data are correlated),

conclusions that slopes that are statistically indistinguish-

able from 1 provide strong support for predictions of life-

history invariant theory have to be viewed with caution.

For those studies in Table 1, where the slopes were

indistinguishable from 1 the SD of the ratios were also

less than expected at random, supporting the original

conclusions that the data support life-history invariance

(Shine & Charnov, 1992; Charnov, 1993; Allsop & West,

2003a,b) and is further supported by examination of the

ratios themselves.

A high r2 is often cited as reflecting the robustness of

the invariant relationship (Charnov, 1993; Allsop &

West, 2003a). Our null expectations show that the

ability of the independent variable to explain variation

in the dependent variable (OLS) or a high correlation

between the two (RMA) can be distinguished from

random expectations, but that high (e.g. 0.8) r2 values

can be generated by random data. Therefore, although

the commonly cited values of r2 ¼ 0.8–0.9 (e.g. Charnov,

1993) reflect a high correlation, they are only some-

what better than the random expectation and do not

necessarily indicate an unusually invariant relationship

between the variables. Two of the empirical studies

(Loehle, 1988; Table 1) had r2 values significantly lower

than the random expectation. These low values may be

due to low slopes, because slope and r2 values are

positively correlated or because the range of the X and Y

variables did not overlap. In all cases where r2 is lower

than random, the slope is also significantly lower than

random expectations.

An alternate approach to the search for invariant

relationships is to examine the range of variation of the

proposed invariant ratio itself. Estimates of the value of

life-history invariants have often been obtained by

calculating the mean of the ratios obtained for each

species (e.g. Allsop & West, 2003a). This approach

produces a mean and a SD but it is not clear how to

test for invariance. It is not possible to statistically test a

distribution for zero variance. In any case, this approach

would not be appropriate, as life-history invariants are

predicted to be invariant to a variety of unspecified

transformations but are not predicted to have no

variance (Charnov, 1993). The SD of the empirical ratios

of all but one dataset are significantly smaller than the SD

of the distribution of ratios of bootstrapped and randomly

generated variables with Y < X (Table 2). Significantly

small SD gives support for some type of relationship

between the variables. However, as with the interpret-

ation of r2, how small a variance is necessary to consider

a ratio a ‘life-history invariant’ remains somewhat

subjective (see Charnov, 1993, p. 5). If invariance with

respect to a specific feature (or transformation) were to

be examined, a test for no correlation between Y/X and

that feature would be appropriate.

Conclusions

Patterns predicted by life-history invariant theory can-

not be distinguished from data generated by random

processes by comparing OLS regression slopes of the log-

transformed data, although the slope can be used to

reject either of these hypotheses. A completely new

type of regression model that takes the bounding

explicitly into account is probably necessary to ade-

quately analyse these kinds of data. However such a

method is not currently available. There are several

ways, using current methodologies, in which data that

support life history invariant theory can be distin-

guished from those generated at random. In the absence

of quantitative predictions of life-history data, we

suggest that researchers use re-sampling methods to

examine the variance of the ratios themselves. Ideally,

models of life-history invariants could be used to

generate explicit quantitative predictions of invariants

like L50/Lmax. Empirical values could then be compared

directly to these predictions either using the ratios

directly, or via the slope of the regressions of the

untransformed data.
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