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ABSTRACT

Well-documented cases of natural hybridization among primates are not common. In New World
primates, natural hybridization has been reported only for small-bodied species, but no genotypic data
have ever been gathered that confirm these reports. Here we present genetic evidence of hybridization of
two large-bodied species of neotropical primates that diverged �3 MYA. We used species-diagnostic
mitochondrial and microsatellite loci and the Y chromosome Sry gene to determine the hybrid status of 36
individuals collected from an area of sympatry in Tabasco, Mexico. Thirteen individuals were hybrids. We
show that hybridization and subsequent backcrosses are directionally biased and that the only likely cross
between parental species produces fertile hybrid females, but fails to produce viable or fertile males. This
system can be used as a model to study gene interchange between primate species that have not achieved
complete reproductive isolation.

HYBRIDIZATION can be viewed as either a break-
down of species boundaries that could eventually

result in the loss of pure parental species or a creative
force that can lead to the formation of new recombi-
nant lineages (Arnold 1997; Dowling and Secor

1997; Barton 2001; Mallet 2005; Arnold and Meyer

2006). Regardless of which view is taken, studies of
hybridization are crucial for understanding the basis of
reproductive isolation and the origins of biodiversity
(Coyne and Orr 2004). Hybridization among meta-
zoans has traditionally been viewed as an unusual event,
but a variety of genetic studies in the past few decades
have shown that this phenomenon is rather common,
especially between closely related taxa (Mallet 2005).
Among primates, natural hybridization occurs in at
least 26 of �233 Old World species (e.g., baboons, gue-
nons, macaques, lemurs) in which hybridization occurs
at intraspecific (Groves 1978; Lernould 1988), in-
terspecific (Phillipsconroy and Jolly 1986; Samuels

and Altmann 1986; Struhsaker et al. 1988; Watanabe

and Matsumura 1991; Bynum et al. 1997; Evans et al.
2001; Wyner et al. 2002), and even intergeneric levels
(Dunbar and Dunbar 1974; Jolly et al. 1997). Among
neotropical primates, only 8 of�132 New World species
have been suggested to form hybrids in the wild

(Coimbra-Filho et al. 1993; Peres et al. 1996; Mendes

1997) and these include only small-bodied and very
recently separated taxa. Furthermore, of the few re-
ported cases of interspecific hybridization in the wild
(Silva et al. 1993; Mendes 1997), the taxonomic status
of the species is questionable.

Here we present evidence of hybridization of two
large-bodied neotropical primates, Alouatta palliata and
A. pigra. These are morphologically (Lawrence 1933;
Smith 1970), socially (Crockett and Eisenberg 1987;
Treves 2001; Van Belle and Estrada 2006), behav-
iorally (Crockett and Eisenberg 1987; Neville et al.
1988; Whitehead 1995), and genetically (Cortés-
Ortiz et al. 2003) distinct howler monkey species that
diverged�3 MYA (Cortés-Ortiz et al. 2003). A. palliata
is currently found from southern Veracruz in Mexico
through the central part of Guatemala and the southern
part of Belize, continuing to the south through
Honduras, Nicaragua, Costa Rica, Panama, and the
Pacific coast of Colombia and Ecuador. On the other
hand, A. pigra is confined to the Yucatan peninsula in
Mexico, Belize, and the central and eastern part of
Guatemala (Figure 1). Although A. palliata and A. pigra
are allopatric in most of their range, Smith (1970)
reported an area of sympatry in the state of Tabasco,
Mexico. Currently this area is highly deforested and only
small patches of vegetation with various degrees of
disturbance can be found. During a series of expedi-
tions, we surveyed the area where sympatry had been
reported and found troops with individuals of both
A. palliata and A. pigra (based initially on morphological
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characters), as well as individuals that possessed mor-
phological features of both species. Using a multilocus
approach, we present genetic data that show that these
howler monkeys are hybridizing in Mexico.

MATERIALS AND METHODS

Blood and/or hair samples were collected from A. palliata
and A. pigra individuals from sites in Tabasco, Mexico and
other areas throughout Mexico (Figure 1). Genomic DNA was
extracted using the DNeasy tissue kit (QIAGEN, Valencia, CA).
Primers for eight microsatellite loci ½Ap68 (Ellsworth and
Hoelzer 1998), Ap74 (Ellsworth and Hoelzer 1998),
PEPC8 (Escobar-Páramo 2000), and MapPairs (Invitrogen,
Carlsbad, CA) loci D5S111, D6S260, D8S165, D14S51, and
D17S804� were used to identify diagnostic alleles in each
species and to identify hybrid individuals on the basis of the
presence of these alleles. We used primers CB1-59 and CB2-39
(Palumbi 1996) to amplify a region of the mitochondrial
cytochrome b (cytb) gene and/or primers LCO-CO2-L and LCO-
CO3-H (Cortés-Ortiz et al. 2003) to amplify a fragment of the
ATP-synthase 6 and 8 genes (ATPase). A fragment of the Y
chromosome Sry gene was amplified using primers SW2
(Whitfield et al. 1993) and SRY (Moreira 2002). To de-
termine whether hybridization and subsequent crosses are
directionally biased, we used a chi-square goodness-of-fit test
to compare the observed frequencies of genotypes of hybrid
individuals to those expected if all possible crosses among
hybrids and backcrosses with parental species occur. We also
estimated the probabilities of observing the detected geno-
types on the basis of equal proportions of alleles/haplotypes in
the parental species.

RESULTS AND DISCUSSION

We genotyped 104 individuals of A. palliata and A.
pigra and putative hybrid individuals for the eight mi-
crosatellite loci. These individuals include 40 A. palliata
and 28 A. pigra individuals from outside of the putative
hybrid zone and 36 individuals from within this zone
(Figure 1). On the basis of the genotypes of A. palliata
and A. pigra outside of the zone, three loci contained
alleles that were distinct for each species (Ap68, D5S111,
and D8S185) (Table 1). Sequences of these alleles con-
firmed that size differences are due to differences in
the number of repeat units. The two species shared
alleles at the other loci examined or potentially di-
agnostic alleles occurred at low frequencies in one
or the other species. Several alleles showed clines in
allele frequencies through the hybrid zone. We also
sequenced a 307-bp region of the mitochondrial cytb
gene and/or an 817-bp fragment of the ATPase locus
from the same 104 individuals listed above (GenBank
accession nos. DQ875685–DQ875741 and DQ875611–
DQ875672, respectively). Sequences from the two par-
ental species have fixed differences at 14 sites for the cytb
fragment and 46 sites for the ATPase fragment, and each
locus showed�5% sequence divergence among species.
On the basis of these levels of sequence divergence, A.
palliata and A. pigra likely separated �3 MYA (Cortés-
Ortiz et al. 2003).

In total, 23 individuals from the putative hybrid zone
wholly possessed alleles of either A. palliata (n ¼ 11) or
A. pigra (n ¼ 12) and contained the respective species’
mitochondrial haplotype; this suggests that individuals
of both parental species are nearly equally abundant
within the hybrid zone. Thirteen other individuals were
identified as hybrids on the basis of mitochondrial and
microsatellite data (Table 2). The hybrid individuals in-
cluded seven adult females, one infant female, and five
adult males. Twelve individuals possessed microsatellite
alleles, diagnostic of both parental species, although no
individuals were F1 hybrids (Table 2). The lack of F1’s
may be because these individuals are ephemeral, or the
hybrid zone is old, or it could reflect a low incidence of
hybridization of pure parental forms (see Goodman

et al. 1999). All adult hybrids contained the mitochon-
drial haplotype of A. pigra. The infant was the only
hybrid that possessed A. palliata’s haplotype. The pre-
sumed mother of this infant (based on genotypic data
and the fact that the female was carrying the infant) was
pure A. palliata based on the genetic markers used here
and her appearance and occurred with a hybrid male
that was likely the father of this infant based on the
genotypic evidence. Hybrid individuals occurred in
fragmented habitats where the two species’ distribu-
tions overlap and were members of ‘‘mixed troops’’ that
contained individuals of both parental species and in
some cases individuals with unique or intermediate
morphologies (Figure 2).

We attempted amplifications of a region of the Sry
gene with genomic DNA of 4 A. palliata males, 2 A.
palliata females, 3 A. pigra males, and 2 A. pigra females
from outside of the putative hybrid zone and all 13

Figure 1.—Geographic distribution of A. palliata and
A. pigra, and approximate location of troops sampled. Letters
represent different troops. Localities: open circles contain A.
palliata individuals, solid circles contain A. pigra individuals,
and shaded circles contain individuals that have been genet-
ically characterized as hybrids/backcrosses.

2422 L. Cortés-Ortiz et al.



individuals from within the hybrid zone that were
characterized as hybrids. Amplifications were success-
ful only with genomic extractions of males; this and the
fact that direct sequencing of amplification products
yielded chromatograms without double peaks or other
ambiguities strongly imply that the gene amplified
occurs on the Y chromosome in these individuals. The
sequences obtained from individuals outside of the
hybrid zone were �821 bp in length and showed fixed

differences at three sites among species (GenBank
accession nos. DQ875673–DQ875684). All male hybrid
individuals (n ¼ 5) possessed the Sry gene of A. pigra
(Table 2).

If matings of hybrids are random and occur among all
possible combinations of hybrids and parental species,
we expect to find equal frequencies of the four possible
genotypes of males and the two possible genotypes of
females at the maternally inherited mitochondrial locus
and the paternally inherited nuclear locus located on
the Y chromosome of males. Although sample sizes are
small, the chi-square goodness-of-fit tests suggest that
the observed frequencies of males’ and females’ geno-
types differed significantly from these expectations
(Table 3). Moreover, probabilities of detecting 12 adult
hybrids with the mitochondrial haplotype of A. pigra
(P ¼ 2.4 3 10�4), 12 hybrid individuals with the mito-
chondrial haplotype of A. pigra plus 1 hybrid individual
with the mitochondrial haplotype of A. palliata (P ¼
1.6 3 10�3), and all 5 hybrid males with the Sry gene of
A. pigra (P ¼ 3.1 3 10�2) are low. These patterns imply
that the direction of hybridization and subsequent back-
crosses is strongly biased. Only crosses between A. pigra
females or hybrid females carrying the mitochondrial
haplotype of A. pigra and A. palliata males or hybrid
males with the Sry gene of A. palliata occur and give rise
to female offspring (Figure 3). However, no male

TABLE 1

Frequencies of alleles of microsatellite loci of populations
of A. palliata and A. pigra from outside and within the

putative hybrid zone (including hybrids)

Locus Allele sizea ApaOb ApaHZc ApiHZd ApiOe

Ap68 187 — — 0.11 0.17
191 — — 0.64 0.41
193 0.99 1.00 0.20 —
195 0.01 — — —
197 — — 0.05 0.43

Ap74 150 — — 0.50 0.68
152 0.99 1.00 0.36 0.25
154 — — 0.14 0.07
156 0.01 — — —

D5S111 163 1.00 1.00 0.11 —
167 — — 0.02 0.13
169 — — 0.48 0.27
174 — — — 0.02
178 — — — 0.04
180 — — 0.39 0.55

D6S260 171 — — — 0.06
173 — 0.25 0.02 —
177 0.53 0.75 0.07 0.02
179 0.44 — — 0.02
181 0.04 — 0.18 0.27
183 — — 0.07 0.08
185 — — 0.16 0.06
187 — — 0.50 0.50

D8S165 119 — 0.07 0.91 1.00
143 1.00 0.93 0.09 —

D14S51 143 0.03 0.04 0.50 0.48
145 0.03 — 0.05 —
147 0.95 0.96 0.45 0.52

D17S804 157 — — — 0.15
161 1.00 1.00 0.89 0.61
163 — — — 0.04
165 — — 0.05 0.07
167 — — 0.07 0.06
169 — — — 0.07

PEPC8 239 — — 0.26 0.43
244 — — 0.11 —
246 — — 0.05 0.04
248 1.00 1.00 0.58 0.54

a Allele sizes are the sizes of the complete sequence of the
microsatellite alleles and include both repeat and flanking re-
gions. Diagnostic alleles are shown in italics.

b ApaO, A. palliata from outside the putative hybrid zone.
c ApaHZ, A. palliata from within the putative hybrid zone.
d ApiO, A. pigra from outside the putative hybrid zone.
e ApiHZ, A. pigra from within the putative hybrid zone.

TABLE 2

Hybrid individuals in the area of species overlap that showed
mixed A. palliata and A. pigra character states

Microsatellite locuse

IDa Sexb Phenotypec mtDNAd Ap68 D5S111 D8S165 Sry f

S096 F Apa i a/a a/a a/a NA
S098 M Api i a/i a/i a/i I
S154 M Api i a/i i/i i/i I
S155 F Api i a/i a/i i/i NA
S157 F Api a a/a a/i a/i NA
S161 F Apa i a/a a/a a/i NA
S162 F Apa i a/a a/a a/i NA
S164 F Api i a/i i/i i/i NA
S165 M Api i a/i i/i i/i I
S166 M Api i a/i a/i i/i I
S167 F Api i a/i i/i i/i NA
S182 M Api i i/i i/i a/i I
S183 F Api i i/i a/i a/i NA

a Identification code.
b All individuals except S157 were adults; S157 was an infant

still being carried by its presumed mother.
c Phenotype based on size and pelage coloration and tex-

ture. Apa, A. palliata-like; Api, A. pigra-like individuals.
d Mitochondrial haplotype. a, A. palliata; i, A. pigra.
e Identity of alleles for parental species at each diagnostic

microsatellite locus. a, A. palliata; i, A. pigra.
f Identity of the Y chromosome Sry gene. I, A. pigra; NA, pri-

mers did not amplify a product and were not expected to on
the basis of the sex of this individual.
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hybrids with the Sry gene of A. palliata were observed
and so, in accordance with Haldane’s rule (Haldane

1922), the data strongly suggest that the aforemen-
tioned crosses fail to produce viable males. Further-
more, on the basis of the low probability of detecting
only the mtDNA haplotype of A. palliata in 12 adult
hybrid individuals, A. palliata females and A. pigra males
or hybrid males either mate infrequently or typically fail
to produce viable offspring. Nonetheless, the genotypes
of the hybrid infant and its suspected parents imply that

this infant (S157, Table 2) was produced from a
backcross between a male hybrid (S154, Table 2) and a
female A. palliata. This demonstrates that such matings
occur and that female offspring are produced. However,
because no adult females were observed with the
mitochondrial haplotype of A. palliata, we suspect that
such crosses are uncommon or this infant is either
infertile or will not survive to reproductive age.

We are currently investigating the potential role of
morphological, behavioral, genetic, and cytogenetic
differences as causes of the bias in direction of hybrid-
ization of these species. This work should advance our
understanding of the speciation process and origins of
reproductive isolation among primates, as well as the
role of hybridization in primate evolution (Arnold

and Meyer 2006). Moreover, study of the presence of
hybrids in fragmented and intact forest tracts will reveal
whether human-induced forest fragmentation has in-
stigated hybridization by confining members of both
species to small areas and limiting access to conspecific
mates.
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