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dual purpose in field studies. They can be readily re-
covered from the field after a prolonged period, and
their populations can be controlled by providing or
withholding the required nutrient. It should be noted
that not all auxotrophic mutations can be expected to
perform in this way; a C. heterostrophus mutant re-
quiring inositol (ins2) survived marginally but did not
spread in the field when tested in experiments parallel
to those described for his 1 (Tables 1 and 2).

Although genetic markers such as drug resistance
(Brockwell et al. 1978, Kloepper et al. 1980), morpho-
logical mutations (Hausermann et al. 1971, Foster
and Helman 1979), enzyme polymorphisms (Hanken
and Sherman 1981), and auxotrophs (Van Alfen et al.
1975) have been used previously to track the presence
of experimental organisms in the field, to our knowl-
edge the work reported here represents the first use
of a conditional mutant whose population dynamics
can be manipulated under field conditions while si-
multaneously bearing genetic markers to detect gene
flow or contamination of field plots by nonexperimen-
tal organisms. Research involving field studies of pop-
ulations may be facilitated by use of genetically marked
organisms under conditions that allow experimental
control of population growth.
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USE OF ARTIFICIAL WEBS TO
DETERMINE PREY AVAILABLE TO
ORB WEAVING SPIDERS'

José A. Castillo L.? and William G. Eberhard?-*

The success of web-weaving spiders in predation
depends largely on the placement and design of their

webs. It would seem that simple traps similar to webs
would give good estimates of both numbers and kinds
of prey available to web weavers. However classical
trapping techniques for insects (windowpane traps,
sticky traps, sweeping) capture different proportions
of prey species than those captured by spiders (Rob-
inson and Robinson 1973). Although these unsatisfac-
tory techniques have not been completely abandoned
(e.g., Olive 1980), traps specially designed to function
like spider webs have been used in recent studies
(Eberhard 1977, Login and Pickover 1977, Chacén and
Eberhard 1980, Uetz and Biere 1980, Biere and Uetz
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FiG. 1. Relationship between numbers of individuals of
each species of insect which were captured by traps and by
Metazygia gregalis spiders. The small numbers within the
data field indicate the numbers of species at that point.

1981, M. Greenstone and A. L. Rypstra, personal
communications). Uetz and Biere (1980) found that
artificial webs captured relatively more small prey than
did adult female Micrathena gracilis. Their calibration
study was incomplete, however, because prey were
identified only to order, and neither the height of the
spider webs above the ground nor the angle between
the web and vertical were equal in all cases to those
of the traps. Chacon and Eberhard (1980) showed that
web height and angle can greatly affect trap captures.
In addition, Uetz and Biere (1980) did not check all
spider webs at regular intervals, did not discount prey
captured in webs before traps were in position, and
conducted their study in a forest where microhabitat
differences may have existed between web sites and
trap sites.

The present study controlled for all of the factors
Just mentioned. We found that even under optimum
conditions traps gave only very approximate estimates
of the prey captured by spiders.

We used 10 traps with parallel nylon lines strung on
aluminum frames, made according to the size and de-
sign of Eberhard (1977) and coated with Tack Trap
(Animal Repellents, Griffin, Georgia) as described by
Chacon and Eberhard (1980). We hung traps at ~8-m
intervals along a 72-m portion of a 3-m vertical barbed
wire fence in the middle of a large, open field of grass
and weeds (see photograph in Chacon and Eberhard
1980) on the Melendez campus of the Universidad del
Valle in Cali, Colombia, on the evenings of 3, 9, 11,
16, 18, 20, and 22 December 1980. A large population
of the orb-weaving araneid Metazygia gregalis, a
species which spins in the early evening, was present

NOTES AND COMMENTS

Ecology, Vol. 64, No. 6

in the fence. Each evening at =~1900 the traps were
hung in the fence 1.5 m above the ground (top of trap),
and all prey captured previously by spiders in that
section of the fence were removed. We used fine for-
ceps and scissors to separate the prey from the spider
and its web with a minimum of damage to the web.
Only spiders with webs between 0.7 and 1.5 m above
the ground were observed. All spiders were in the first
four instars. (Larger individuals built higher in the
fence.) The size of each spider was determined in the
field by comparison with standard spiders of each of
the five instars in vials. Every 10 min the spiders’ webs
were revisited and any prey the spiders had caught and
were feeding on were removed and placed in alcohol.
Prey taken from different spider instars were kept sep-
arate. Most sessions were terminated between 2100
and 2200, at which time the traps were removed and
placed in a tightly closed styrofoam box. The prey
were removed from the traps the next day, washed in
gasoline, and stored in alcohol, and traps were washed
and recoated as described by Chacon and Eberhard
(1980).

All prey were measured to the nearest millimetre
(front of head to tip of abdomen) and classified to
species using a synoptic collection of the insects at the
study site. This collection is stored in the Departa-
mento de Biologia of the Universidad del Valle. On 22
December additional insects were collected by sweep-
ing near the fence (20 samples of 20 sweeps per sample)
during the period the traps were up. Unless otherwise
noted, statistical tests were two-tailed x>.

A total of 238 individuals of 46 species in 25 families
and 9 orders were collected from spider webs, and 654
individuals in 88 species in 43 families and 10 orders
were caught in the traps (a list of the families and the
numbers of species in each is available®). There was a
significant correlation between trap and spider cap-
tures in the total numbers of each prey species, but
only 23% of the mean squared variation in spider cap-
tures was explained by trap captures (Fig. 1).

We observed two probable causes of this low cor-
relation. We never found the most common species in
the traps (a cicadellid homopteran; 93 captured) being
eaten by a spider. This insect, despite its lack of warn-
ing coloration, was apparently distasteful. One spider
was observed rushing to attack an individual that had
landed in its web, but after touching the insect the
spider returned to the hub without completing the at-
tack, and the insect escaped. Thus some of the species

> See ESA Supplementary Publication Service Document
No. 8412 for 2 pages of supplementary material. For a copy
of this document, contact the second author or order from
The Ecological Society of America, Cornell University, Ith-
aca, New York 14853 USA.
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Fi1G. 2. Distributions of sizes of prey captured by traps,
and by larger and smaller M. gregalis spiders.

in the traps were probably intercepted and retained by
spiders’ webs but subsequently not eaten by the spi-
ders.

Second, spiders of different sizes captured different-
sized insects. Larger spiders (instars 3 and 4) captured
both larger prey than smaller spiders (instars 1 and 2)
P < .01, comparing prey in the size classes in Fig. 2),
and also a greater variety of prey sizes (Fig. 2). (The
data from 16 and 18 December were excluded in these
analyses, since the relative numbers of small and large
spiders were different from the combined totals of the
other nights, P < .05 and P < .01, respectively; none
of the other nights were significantly different.) The
prey captured in traps were significantly larger than
prey captured by small spiders (P < .05) but not sig-
nificantly different from prey captured by large spiders
(comparisons of prey and spider size classes in Fig.
2). More data (82 additional prey) which included the
prey captured by spiders immediately prior to the ob-
servation periods show the same statistically signifi-
cant tendencies (Fig. 3).

Even when these sources of discrepancy were re-
duced by considering only the prey caught by larger
spiders during the observation periods, and excluding
the apparently distasteful cicadellids, the unexplained
mean square variation was still 52%.

Although traps failed to mimic webs precisely, they
were clearly superior to sweeping. A total of 500 in-
dividuals of 75 species were captured by sweeping.
Only one of these species (1.3%) was also found in
spider webs. This contrasts with 88 species captured
in traps, of which 31 (34.8%) were also found in webs.

Habitat quality in.terms of expected prey yield should
be measured only in terms of those prey which the
spiders can be expected to capture and feed upon.
There are clearly many insect species present in the
vicinity of spiders’ webs which are not caught and fed
upon by the spiders. Some prey probably avoid or fly
through webs, others escape before the spider attacks,
and others cause the spider to fail to complete attacks.

The traps in this study were unusually well placed
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FiG. 3. Distributions of sizes of prey captured by differ-
ent instars of M. gregalis spiders, including prey collected at
the start of each observation period (N = all prey captured
by spider instar).

to intercept the same prey as the spiders’ webs. Webs
and traps were in an extremely uniform environment,
were at the same height above the ground, were pres-
ent at the same time of day, were up only at night
when both traps and webs are nearly invisible (both
trap and web visibility may influence catches; Rypstra,
in press), and were oriented exactly the same way with
respect to both gravity and the wind (angle with wind
direction affects trap captures; E. Alvarado, personal
communication). Despite these extraordinarily favor-
able conditions, there were substantial differences be-
tween the insects captured by the spiders and by the
traps. Failure to standardize any of the several diffi-
cult-to-control factors which were kept constant here
can strongly affect the data obtained (Chacén and
Eberhard 1980, E. Alvarado, personal communica-
tion). Thus it seems likely that other trapping pro-
grams, which have not been and will not normally be
done under such favorable conditions as those of this
study, will yield only imprecise estimates of habitat
quality in terms of expected prey yield for orb-weaving
spiders.

We believe that the best approach to determining
habitat quality for web-weaving spiders is to take ad-
vantage of the spiders’ own behavior (as has been done
already by many authors, e.g., Turnbull 1960, Kajak
1965, Robinson and Robinson 1970, 1973, Nyffeler and
Benz 1978, 1979, Lahmann and Eberhard 1980, Jane-
tos 1982, D. Smith Trail, personal communication).
Because spiders are sedentary on webs, one can locate
a series of webs and then revisit them to observe what
the spiders have captured. Using care not to flush prey
into webs, correcting for the different handling times
for different prey, and sampling on a schedule which
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covers the entire active period of the web, such ob-
servations can yield data much better than those avail-
able for most other predators. Other less direct tech-
niques which take advantage of the spiders’ lack of
mobility are also possible (e.g., Eberhard 1979).

Data from artificial traps is useful to evaluate nat-
ural selection on web design and attack behavior.
Comparisons between what is caught in traps with dif-
ferent properties (height, slant, etc.) can suggest se-
lective factors acting on web design and placement,
and comparisons between trap and spider captures can
indicate which prey are either escaping or not being
attacked. In sum, traps can probably more accurately
assess prey that is available in evolutionary than in
ecological time.
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CONSTRUCTION AND OPERATION OF
HEATED TAXIDERMIC MOUNTS USED
TO MEASURE STANDARD OPERATIVE
TEMPERATURE!

George S. Bakken,? Dale J. Erskine,*? and
William R. Santee®

Previous papers have described the use of heated
taxidermic mounts to make direct measurements of

standard operative temperature, 7,, (Bakken et al. 1981,
Buttemer 1981). The procedures used to construct and
operate the mounts used in this studies were not en-
tirely satisfactory, and were thus not detailed. This
note describes improved methods for constructing
multiple copies of a heated mount.

Standard operative temperature is a direct index of
net sensible heat transfer, which provides a useful def-
inition for the concept of ‘‘environmental tempera-
ture.”” The reader is referred to Gagge (1940), Gagge
and Hardy (1967), Bakken (1976), and Bakken et al.
(1981) for the theory behind T,, and its measurement
with heated mounts. Applications of T, in laboratory
and field studies are described by Bakken (1980), Bak-



