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ABSTRACT

Jaramillo C 2008. Five useful techniques for analysing palynological data. The Palaeobotanist 57(1-3) : xxx-xxx.

Palynologists often produce large quantitative data sets that can seldom be matched by other types of paleontological

data.  Although palynological data are subject to study by analytical techniques to answer questions regarding evolution,

paleoclimate, and biogeography, the use of palynological data has often been qualitative, thus limiting their interpretation.

Here, five techniques that can be used with palynological data are presented.  These deal with diversity (number of species,

evenness, diversity indices, and abundance distribution models), comparing similarities among samples, building a composite

section, constructing species ranges, and estimating edge effects.  The code necessary to perform these techniques has

been included using R for Statistical Computing. R is an open-source and powerful statistical software available freely to

anyone worldwide.

Key-words—Palynology, Data, Analytical Techniques.
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INTRODUCTION

PALYNOLOGICAL (pollen and spore) data can be useful

for understanding plant distribution and evolution

through time (Birks & Line, 1992; Harrington, 2004; Haskell,

2001; Morley, 2000; Odgaard, 1999).  They can also be used to

understand palaeoceanography, palaeoclimatology, and the

evolution of unicellular organisms (using dinoflagellates).

Palynological data are often quantitative (species counts), with

large number of samples, ideal for many types of analyses.  In

the past decade, many analytical techniques have been

developed to solve ecological and palaeoecological problems.
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However, although large numbers of palynological data are

continuously produced, few analytical techniques are

extensively used in the palynological literature.

In this paper,  five simple techniques have been presented

to address typical questions that a palynologist usually tries

to answer.   These techniques can be applied by using a free,

open-source, statistical software called R for Statistical

Computing  (R-Development-Core-Team, 2005) and the R

packages Vegan (Oksanen et al., 2005) and Labdsv (Roberts,

2005).  R is a powerful software that runs on Unix, Windows

and Macintosh operating systems.  All R Codes needed to

apply these techniques to palynological data are also

presented.

FIVE TECHNIQUES

The most typical questions asked by a palynologist are

related to diversity (how many species), palaeoecology (how

samples or species relate to each other), and biostratigraphy

(age of the assemblage).  Here, techniques to approach each

of these questions are presented.  But, first you must install R

for statistical Computing in your machine (go to http://www.r-

project.org/), then install the packages Vegan and Labdsv

(using the Package Installer in R tools), and then load the

packages Vegan and Labdsv (using the Package Manager,

which is in the menu of R).

1. Estimating Diversity

Three aspects are important to consider when dealing

with diversity: the number of species, the evenness and the

abundance distribution.

(a)  Number of Species

In this paper, the word “diversity” is used in its original

sense to denote the number of species (Rosenzweig, 1995),

which is also called “richness”.   Pollen can be a useful tool for

estimating plant diversity through time (e.g. Morley, 2000);

pollen mostly reflects genera and families (Germeraad et al.,

1968; Jackson & Williams, 2004), indicating that it can be used

to track the plant diversity at that taxonomic level through

geologic time.

Within-sample diversity (the number of species in a given

sample) can be assessed using a technique called rarefaction

(Hurlbert, 1971; Sanders, 1968).  In order to estimate the number

of species in a sample, you may want to count just the number

of species in a given sample.  However, the number of species

is controlled by the number of specimens counted; thus, as

more grains are counted, more species are found.  Therefore,

in order to compare the diversity among several different

samples, you must first standardize the counting of all samples.

Rarefaction does this for you.   This is a technique that

calculates the number of species expected at a given sample

size smaller than the actual sample (Sanders, 1968).  This

technique is used to account for differences in diversity

resulting from different sample sizes.

How to apply it?   For every sample, a rarefaction must be

performed to calculate the number of morphospecies found at

a given count (e.g. 200, 300 grains).  All samples that have

smaller counts than the established cutoff count must be

excluded.

R-code

First, let us assume a matrix x, which has two samples;

the first one, X1, has a total count of 205 grains belonging to

50 species.  The second sample, X2, has a total count of 250

grains belonging to 60 species.  Species are in columns,

samples in rows.

X1=c(21,3,14,2,1,1,1,1,2,3,4,7,2,7,1,1,1,1,1,1, 20,15,12,

15,11,21,1,1,2,2,2,2,3,4,4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0)

X2=c(21,3,14,2,1,1,1,1,2,3,14,7,2,7,1,1,12,1,15,1,

20,15,12,15,11,21,1,1,2,2,2,2,3,4,4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)

x=rbind(X1,X2)

The rarefaction is performed as:

rarefy(x, sample, se = TRUE)

Sample is the subcounting size you want to rarefy to,

and se  is the standard error of the rarefaction.

 e.g.

rarefy (x, 205, se=TRUE)

the result is

   X1        X2

Fig. 1—Bootstrapped species accumulation curve, which shows how the

number of species increases as the number of samples analysed

increases. Shaded region shows the 95% confidence interval.
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S  50 53.458921

se  0 2.138707

The result is the number of species at a counting size of

205 grains.  Sample X1 has 50 species, and sample X2 has 53.4

species with a standard error of 2.1.  You have to remember

that samples that do not reach the sample counting level must

be discarded from the analysis, because rarefaction is not useful

for estimating diversity beyond actual counts.

Among-sample diversity (how the diversity increases as

you pool together many samples) can be calculated using

bootstrapped species accumulation curves (Gilinsky, 1991).

There may be two different scenarios: In one case, a region

where the number of species per sample is very high, but

when more samples are analysed from the same region or

stratigraphic section, the number of new species (not found in

the first sample), will not increase very much.  In a second

case, a sample might have few species, but every time a new

sample is analysed, the species found are different from those

in the previously analysed sample.

To compare among-sample diversities standardization of

the sample size is essential, because as more samples are

analysed, the probability of finding new species increases.

Bootstrapping is a technique that facilitates comparison of

intervals with different sample densities (Gilinsky, 1991).  A

single sample is selected at random and the number of species

is counted based on that sample; a second sample is selected

and the number of species is recalculated using the pooled

data from both samples; a third is selected and the process

continues until all samples are included (Colwell &

Coddington, 1994).  The whole process is repeated hundreds

of times, and mean and standard deviation are calculated for

each sampling level.

R-Code

Let us assume a matrix BCI of abundance data from the

Barro Colorado Island forest; species are in columns (225

species), samples in rows (50 samples).

data (BCI)

We calculate the species accumulation curve:

specaccum(BCI)

 We can then plot the accumulation curve (Fig. 1):

plot(specaccum(BCI), ci.type=”poly”, col=”black”,

lwd=2, ci.lty=0, ci.col=”gray”, ylab=”number of species”,

xlab=”number of pooled samples”)

Plot is a function that graphs the species accumulation

curve and its 95% confidence interval.

Comparing two results—A common situation is to have

two different groups of samples, x and y, that you want to

compare to see if they differ in diversity or any other metric,

e.g. diversity changes across a major geological boundary

like the Cretaceous-Palaeogene, or Permo-Triassic.  Usually

you would calculate the average rarefied diversity for each

group of samples and then compare their results using a

statistical test (e.g. student t-test).  But, how do we know if the

difference found is really significant? In other words, what is

the probability of obtaining by pure chance the difference

between x and y that you found?  A useful technique to assess

the degree of significance of a given difference is using a

randomization analysis. The randomization procedure

simulates the null hypothesis that both data sets, x and y, are

from the same population.  First you pool both the x and y data

sets into a single set.   Then you create two different sets by

randomly sampling with replacement diversity estimates from

the pooled samples.  These two sets have the same number of

samples as the original x and y groups. Then, a student t-test

is calculated for the difference of the two sets.  This procedure

is repeated 5000 times.  The resulting histogram of difference

in t-tests, which simulates a t-test between two samples from

the same population (the null hypothesis), is compared with

the original t-test to evaluate its degree of significance.

R-Code

Let us assume two sets of samples, x and y.  Set x has 15

samples, and set y has 20 samples.  Each sample is a rarefied

diversity at a counting of 200 grains, Set x has an average of

22 species per sample, and set y has an average of 25 species

per sample.

x=rnorm(15, mean=22, sd=5)

y=rnorm(20, mean=25, sd=6)

We are going to compare the difference in average

diversity among the two sets using a student t-test.  First, we

need to produce a new vector, bootsp200, pooling the x and y

sets together. This vector simulates a single population that

contains samples from both x and y.

Fig. 2—Histogram of the t value derived from the null hypothesis (no

difference in diversity between two group of samples), with

the 95% confidence limits of the resulting distribution (con-

tinuous vertical lines).  The dashed vertical line shows the t

value of the original data.
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Fig. 3—Species abundance distribution compared to two abundance models

(preemption and veiled log-Normal).  Species are ordered along x

axis, from the most abundant to the right, to the less abundant to

the left.  The deviance is used to evaluate what model fits the

data better (in this case the log-Normal fits the data better).

bootsp200=c(x,y)

Second, we replicate the original sets, x and y, by randomly

choosing samples from the pooled x and y data sets (the vector

that we just created, bootsp200).  Thus, we are creating a null

hypothesis (both x and y sets are coming from the same

population).  Then, we compare the average of the two

simulated data sets using a student t-test, and use the

parameter t produced by the test as the metric to evaluate the

differences. We repeat this process 5000 times.  The resulting

value is stored in the vector xy.boot.

nrand<-5000

xy.boot =numeric(nrand)

for(i in 1:nrand){

x.boot=sample(bootsp200,15, replace=TRUE)

y.boot=sample(bootsp200,20, replace=TRUE)

xy.boot[i]= t.test(x.boot,y.boot)$statistic

}

Then we plot a histogram of the t value derived from the

null hypothesis, and draw the 95% confidence limits of the

resulting distribution (Fig. 2).  Finally we plot the parameter t

produced by the t-test when the original data sets, x and y, are

compared.  Thus, we can evaluate the probability of finding

the t value of the original data set by chance (the null

hypothesis).

hist(xy.boot, xlab=”t value”)

clim<-quantile(xy.boot, c(0.05, 0.95))

abline(v=clim, lwd=2)

abline(v= t.test(x,y)$statistic, lwd=2, col=”red”, lty=2)

(b) Evenness

It is also useful to evaluate the variation in the species

abundances among a community.  Pielou’s evenness (J)

summarizes in a single metric the abundance distribution of a

population (Hayek & Buzas, 1997).  J=(H/log S) where H=

Shannon Index =”S p
i
 log

10
 p

i
, where p

i
 is the proportional

abundance of species i, and S= number of species.  The highest

possible evenness (J = 1) occurs when all species have the

same number of individuals.  A low value indicates that most

individuals belong to very few species.

R-Code

Let us assume an abundance data matrix x that has

samples in rows and species in columns.  The Pielou’s index

J is calculated as:

J<- diversity(x)/log(specnumber(x))

(c) Diversity Indices

Ecologists have developed several metrics that attempt

to summarize in a single number both the number of species

and the evenness.  These metrics try to answer, using a single

number, how well the abundances among the species in a

sample are distributed and how many species the sample has.

They have called these metrics “diversity indices”.  There are

many indices to choose from, and each one has both strengths

and weaknesses, making the choice of a particular index very

subjective.  A useful index is the Shannon index (H= -”p
i
 log

10

p
i
, p

i
=proportion of individuals that belong to species i).  It is

a measure of uncertainty of a selection process (Hayek &

Buzas, 1997; Zar, 1999).  A maximum value of H occurs when

species are equally abundant in a sample, and the uncertainty

of knowing which species will be observed next would

therefore be highest (Hayek & Buzas, 1997).  H is a function of

the number of species and the abundance distribution of

individuals within those species (Hayek & Buzas, 1997).

R-Code

Let’s assume an abundance matrix x, where species are in

columns and samples in rows.   The Shannon index H is

calculated as:

H<- diversity(x)

(d) Abundance Distribution Models

It is useful to evaluate the shape of the abundance

distribution of a sample, and compare it with several statistical

models of species abundance distribution (Magurran, 2004).

There is usually a strong bias in pollen abundance toward

wind-pollinated taxa, but still, the shape of the abundance

distribution could be quite informative.  It also can be very

useful when comparing dinoflagellate cyst communities from

stressed versus non-stressed environments.

There are many models of species abundance

distribution.  The most common types are the niche preemption

model (also called geometric series or Motomura model), and

the veiled log-Normal model (Wilson, 1991).  The empirical

abundance distribution is compared with those models, and

the best-fitting model is often calculated using deviance as a
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parameter for fitness between the empirical data and a given

abundance model.

The niche preemption model calculates the expected

abundance, a, of species at rank r as a
r
 = J a(1 “ a )r”1.  Only

one parameter is estimated, the preemption coefficient  a, which

gives the decay rate of abundance per rank (Oksanen et al.,

2005; Wilson, 1991).  There is also a fixed scaling parameter J,

which is the total abundance.  In the preemption model, the

most abundant species takes a proportion k of some limiting

resource, the second most dominant takes the same fraction k

of the remainder, and so on until all species are accommodated

in the community (Magurran, 1988).  This type of abundance

distribution is found primarily in harsh environments

dominated by few species such as alpine forests (Wilson,

1991).  The veiled log-Normal model assumes that the

logarithmic abundances are distributed normally, or a
r
 = exp(log

ì + log s N), where a
r
 is the expected abundance a of species at

rank r, log ì is the fitted mean of log abundance, s is the fitted

standard deviation of Ln abundance, and N is a Normal deviate

that includes a parameter, a veil, that assumes that only a

proportion of the most common species were observed in the

community (Oksanen et al., 2005; Wilson, 1991).  This type of

abundance distribution is very common among most plant

communities from non-extreme environments (Magurran,

2004).

R-Code

Let us assume a sample x that contains the species

abundances of 32 species.

x=c(70,25,23,23,10,8,7,6,5,4,3,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)

The deviance of the preemption model versus the

empirical data is calculated as (Fig. 3):

rad.preempt(x)

plot(rad.preempt(x))

and the deviance of the veiled log-Normal model versus

the empirical data is calculated as (Fig. 3):

rad.veil(x)

plot(rad.veil(x))

2. Similarity among samples

Often, it is required to find out differences or similarities

among groups of samples along a stratigraphic profile, or

across a region.  A useful technique to solve this problem is

using similarity indices .  Many of them have been proposed

in the ecological literature over the years.  One of the most

effective similarity measures is the Sorensen index (Magurran,

2004; Sorensen, 1948).  It is a presence/absence index that is

simple to calculate and interpret.  It ranges from one, when

two samples have the same species, to zero, when no species

are in common among two samples.

Sorensen=  2a / (2a + b +c), a= total number of species

present in both samples, b= number of species present only in

sample 1, c= number of species present only in sample 2.

However, this index does not take species abundance

into account.  Two samples could be very different when the

most abundant species are compared.  A similarity index that

takes abundances into account is the Morisita-Horn index, a

widely used index that is not strongly influenced by the

number of species and sample size, but is sensitive to the

most abundant species (Wolda, 1981, 1983).  It also ranges

from zero (no shared species) to one (identical species and

abundances).   It is often recommended to transform the

Fig. 4—Graphic correlation and building a composite section.  (4A)

The line of correlation between section 1 and 2 is traced based

upon the distribution of FAD (first appearance datum) and

LAD (last appearance datum).  (4B) Samples from section 2

are extrapolated into section 1, using the line of correlation.

This procedure allows the location of all samples, from all

sections, into a single section, the Composite Section.
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abundance data before the analysis by taking the square root

of each value, to minimize the effect of very abundant species

on the Morisita-Horn index.

Morisita-Horn = 2*”(x[ij]*x[ik])/((d[j]+d[k]) *

“(x[ij])*”(x[ik])) , where

d[j] =”(x[ij]^2)/Nj^2)

d[k] =”(x[ik]^2)/Nk^2)

Nj= total number of individuals at sample J

Nk= total number of individuals at sample K

x[ij]= number of individuals in the ith species in sample J

x[ik]= number of individuals in the ith species in sample

K

R-Code

Let’s assume an abundance matrix x that contains species

in columns and samples in rows.  Sorensen and Morisita-Horn

are calculated as dissimilarities (1 minus the index).

dsvdis(x, index=”sorensen”)

vegdist(x, method = “horn”)

3. Building a Composite Section

It is often the case that there may have several

stratigraphic sections across a region.  How could one build

up an overall summary of the pattern seen in the fossil record?

One tool is producing a composite section.  A good method to

construct a composite section is graphic correlation (Edwards,

1984, 1989; Shaw, 1964).  A detailed explanation of this technique

was published by Edwards (1989). Bivariate plots are made

where the points of origination and extinction of the taxa

present in one section are compared against the same taxa in

another section.  Based upon the distribution of the origin

and extinction points of the plot, a line of correlation is traced

(Fig. 4a).  This line represents time equivalence among the two

sections that are being compared.  Using this line, all samples

from one section can be extrapolated to the other section.

This procedure is applied to every available section, until all

samples from all sections are extrapolated to a single section,

thus constructing a composite section (Fig. 4b).

No code has been implemented in R to perform graphic

correlation.  Such a code is expected in the near future.

However, one can use a simple bivariate plot (x versus y), and

perform the graphic correlation by hand.

4. Constructing species ranges, the Range-through

Method

It is often necessary to calculate species ranges, either

for biostratigraphic purposes or to estimate standing diversity

(number of species at a given time).   The range-through

method (Boltovskoy, 1988) is very useful for such purposes.

This method assumes that a taxon is present in all samples

that lie between its first and last appearance datums.  It

minimizes the effect of facies-related fossils and differences in

capture probability on biostratigraphic ranges and standing

diversity.  Calculation of standing diversity often excludes

unique taxa (those that are present in only one sample),

because they can introduce noise into the diversity pattern

(Wing, 1998).

R-Code

First, we define a function (fill.occur) that will perform

the range-through method

fill.occur=function(sp)

{

occur=which(sp>0)  ##array of row numbers where sp>0

fad=occur[1] #row of first number in array

numboccur=length(occur)# how many numbers in the

array

lad=occur[numboccur]#row number of the last position

in the array

alloccur=rep(0,length(sp))## produces a matrix of zeroes

similar in size to original

i=1:length(sp)## all positions in the matrix are now labeled

i

alloccur[i>=fad & i<=lad]=1## replaces all i in between

fad and lad by 1

return(alloccur)#gives the matrix out

}

Then, we apply the function fill.occur to an abundance

matrix x, which has species in rows, and samples in columns.

It produces a presence/absence matrix, y, with the range-

through already applied

y<- apply(x,2,fill.occur)

Standing diversity can then be calculated by summing

the diversity of each sample of matrix y

apply(y,2,sum)

The positions of the first appearance datum (FAD) and

last appearance datum (LAD) of each species in the composite

section can be calculated using the function fadlad and a

vector containing the stratigraphic position of each sample

(depthtotal)

fadlad=function(sp,depth)#funtion to calculate FAD and

LAD

{

occur=which(sp>0)  ##array of row numbers where sp>0

fad=occur[1] #row of first number in array

numboccur=length(occur)# how many numbers in the

array

lad=occur[numboccur]#row number of the last position

in the array
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Fig. 5—Biostratigraphic range chart.  (5A) Species are ordered based upon the stratigraphic position of their LAD, from the youngest to the left,

to the oldest to the right.   Notice that there is a linear arrangement of FADs at the top of a section.  This is produced by the edge effect.

(5B) Piecewise regression to find the breakpoint, the point that indicates where the edge effect weakens.
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return(c(depth[fad],depth[lad]))

}

The FAD and LAD of each species in matrix y (species

must be in rows, samples in columns) are then calculated as:

apply(y,1,fadlad,depthtotal)

5. Estimating Edge Effects

Edge effects are very problematic in biostratigraphy,

palaeoecology and palaeodiversity.  They are produced

because not all species have the same probability of being

found (Foote, 2000).   A rare species appears in the fossil

record after its time of origination, and it also disappears from

the fossil record before its time of extinction.  On the other

hand, abundant species usually begin and end close to their

real origination and extinction events.  In a typical

palynological sample most of the species have rare to moderate

abundances.  The FAD and LAD calculated for those species

in a section are going to be offset from their real point of

origination and extinction.  The edge effect is more significant

when the section analysed has few samples or is

stratigraphically very short.  The edge effect is a major problem

in palynostratigraphy and few analytical solutions have been

proposed to deal with it.  A capture-recapture model, often

used in zoological studies, would be ideal for this purpose,

but it still has not been developed.

One tool, albeit not perfect, to estimate the edge effect is

using a piecewise regression.  If we arrange the species

according to their LADs, we are going to notice that there is

often a linear arrangement at the top of a section (Fig. 5a).

Something similar happens at the bottom of the section if we

arrange the species according to their FADs.  It seems

reasonable to assume that the linear pattern is produced by

the edge effect. Often the most abundant species had a LAD

very close to the end of the section, and species less abundant

tend to have their LAD farther apart from the top of the section;

the rarer the species, the farther apart (Fig. 5a).  The position

of the linear pattern could be found by performing a piecewise

regression.  This regression assumes that there are two

different regression functions to the same data (SPSS, 1999)

and attempts a two-segment fit of the data.  The breakpoint is

the intersection of the two fitted regression lines and would

represent the point where the edge effect becomes minimal

(Fig. 5b).  The regression iteratively tries all possible positions

of the breakpoint and chooses the one that produces the lowest

residual sum of squares (Yeager & Ultsch, 1989).  The model

to fit follows Duggleby and Ward (1991) for a two-segment

linear regression.  y = y
T
 + [(m

L
 + m

R
)(x - x

T
) - (m

L 
- m

R
) ½x-x

T
½]

/ 2   y= FAD or LAD, x = species, x
T
 = breakpoint species, y

T
 =

breakpoint FAD or LAD, m
L
 = slope left of breakpoint, m

R
 =

slope right of breakpoint.

R-Code

Piecewise regression for FAD.  It calculates a piecewise

regression of the vector x, which is a set of FAD values given

for a section.  It returns the position of the breakpoint,

breakFAD, which fits the data better.  It is important to exclude

from the analysis all species that are present in the oldest

sample analysed (for FAD analysis), and all species that are

present in the youngest sample (for LAD analysis).

fad.edge<-sort(x,decreasing = TRUE)

cumuedge.fad<-c(1:length(fad.edge))

step1<-numeric(length(fad.edge))

for (i in (1:length(fad.edge))){

step1[i]<-sum(resid(lm(fad.edge[1:i] ~cumuedge.fad[1:i]))

^2)

}

step2<-numeric(length(fad.edge))

for (i in (1:length(fad.edge))){

step2[i]<-sum(resid(lm(fad.edge[i:length(fad.edge)]

~cumuedge.fad[i:length(fad.edge)]))^2)

}

piecewise<-step1+step2## sum of first and second

segment

breakFAD= fad.edge[which(piecewise==min(piecewise

))]

Piecewise regression for LAD.  It calculates a piecewise

regression of the vector y, which  is a set of LAD values given

for a section.  It returns the position of the breakpoint,

breakLAD, which fits the data better.

lad.edge<-sorty,decreasing = TRUE)

cumuedge.lad<-c(1:length(lad.edge))

step1<-numeric(length(lad.edge))##first segment of

piecewise

for (i in (1:length(lad.edge))){

step1[i]<-sum(resid(lm(fad.edge[1:i]~cumuedge.fad[1:i]))

^2)

}

step2<-numeric(length(lad.edge))##last segment of

piecewise

for (i in (1: length(lad.edge))){

step2[i]<-sum(resid(lm(fad.edge[i:218]~cumuedge.

fad[i:218]))^2)

}

piecewiselad<-step1+step2## sum of first and second

segment

breakLAD= lad.edge[which(piecewiselad==min(

piecewiselad))]

CONCLUSIONS

Five simple analytical techniques to be used with

palynological data were presented. These techniques deal with
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diversity issues, similarity comparisons, building a composite

section, constructing species ranges, and estimating edge

effects.  The source code to implement these techniques in

the free, open-source R for Statistical Computing software is

given.  There is still much room for improving the handling of

data among the palynological community.
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