
An evolutionarily stable strategy 
approach to indiscriminate spite 
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AN individual behaves spitefully when it harms itself in  order to 
harm another individual more'. Hamilton'.? predicted that spite 
may evolve if it is expressed only  in  those encounters that 
occur between individuals of less than average relatedness. 
More recently Verner' suggested that territory size may become 
super-optimal because of a selective advantage arising from the 
spiteful exclusion of others from limited resources. His model is 
essentially different from Hamilton's in  that spite is directed at 
individuals indiscriminately with respect to relatedness. 
Recently Rothstein" has shown analytically that the initial 
spread of spiteful traits will be very slow in all but the smallest 
populations. He also argued verbally that indiscriminate spite 
can never be evolutionarily stable even if it should spread (see 
also Daviess). The question of evolutionary stability is clearly 
important, but its resolution requires an analytical approach. 
We report here an approach based on Maynard Smith's' concept 
of the evolutionarily stable strategy (ESS), a strategy which, 
when common, does better than any alternative strategy played 
by a rare mutant. We show that spite can be an ESS, but that the 
magnitude of spite will be small in large populations. 

Consider a territorial species with non-overlapping genera- 
tions in which individuals compete for a finite number of 
resource units essential for reproduction. The resource units are 
distributed in patches, each of which has a pool of competitors 
for the resource units. At each patch ingividuals settle at 
random, one by one, out of the pool until no more resource units 
are available. 

Let: R = t h e  number of resource units in a single patch; 
P = the number of patches; X = the number of resource units 
defended by an individual; X ,  = t h e  strategy for resource use 
(the number of resource units defended) established in the 
population; X ,  = t h e  strategy played by a single mutant in one 
of the P pools of competitors; f ( X )  =the fitness of an individual 
defending X resource units (0 s f ( X )  s 1). expressed as the 
product of gross benefit ( b ( X ) )  and cost ( c ( X ) ) ;  Xopl=the  
strategy which maximises individual fitness ( b ( X ) c ( X ) ) ;  V = a  
constant that converts f ( X )  into the number of surviving 
offspring produced by an individual; rz(X,) = the number of 
individuals in  generation r + 1 competing for the R resource 
units of each patch when the population strategy of generation r 
was X , ;  we assume here that n ( X , )  = f ( X , )  VRIX,;  U/, = the 
mean fitness of individuals playing strategy X .  

We wish to find a value for the strategy X ,  su5h that the mean 
expected fitness of individuals playing X ,  ( WxP) exceeds the 
expected fitness of a mutant individual playing any alternative 
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Fig. 2 The relationship hetween the number of resource units 
defended and individual titness for three titness functions. 
X,,,, is the value of X which maximises the number of 
surviving offspring produced (/'(X,,,,l= 0 ) .  Solid line, S = 1 : 
dash-dot line. S=O.l;  dotted line. S=O.OI. f ( X ) = h ( X ) c ( X l =  

( 1  - e x p ( - X ) ) ( e x p ( - S X l ) .  

strategy X ,  ( WXJ. Figure 1 shows how W,, and W.yn> can be 
precisely calculated for sp_ecific cas_es. Unfortunately, although 
general formulations for Wxs and Wxm can be obtained in terms 
of R,  X ,  and X, ,  they are mathematically intractable. For this 
reason we have used the following approximations (written in a 
form parallel to the precise examples in Fig. 1): 

I patch. mutant gels in 

I patch. mutant does not get i n  

P -  I parches. no mutant 

(assuming t z ( X , j > R / X , ,  I I  > 1 ,  R ax,,  R Z X , , , ,  prob. = 
probability). 

Probabilities Total payoffs to 
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Fig. 1 The possible outcomes when individuals settle out at random froin a pool of ti competitors to f i l l  patches with 6 resource uni t s  I n  c n e  
patch coinpetitors cons151 of t i  - 1 individualswhoplay X, = 2. and a single mutant indi\,idual u ho plays A',,, = 3 .  I n  the rernaininp P -  1 patches all 
competitora pl.!v the strategy X , .  A particular individual, say the mutant in  one patch, may settle first. second. third or n o t  at all. Sore  that t h e  last 
individual to Settic takes either the number of resource units dictated h) its strategy or the number left in the patch, whichexer is smaller The  
mean expected fitness of an individual playing a particular strategy is equal to the total expected payofis t o  all individuals playing the stratsy! 

di\ided h! t h e  number of individuals playing the strategy. 
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Fig. 3 The degree of spite, expressed as a ratio of the ESS number 
of resource units defended to the  'optimal' number, as a function of 
the cost of spite (as modified by the shape constant, S) and potential 
population size ( P V R )  using the same fitness functions as in Fig. 2. 
For each fitnesscurve, the ESS isequal to R (that is, 'taketheentire 
patch') whenever PVR is below the range of values for which the 
ratio is plotted. Solid line, S = 1; dash-dot line, S = 0.1 ; dotted line, 

S=O.Ol. 

We now solve for the ESS, using the technique described by 
Parker and Macnair', as follows. If XES, is the ESS for the 
number of resource units taken, then it must be more fit when 
common than any single mutant which takes XES, Y resource 
units ( Y > 0). Thus if we subtract the expected fitness of a single 
mutant taking XES, Y units from the mean expected fitness of 
individuals taking XES, units, the result is positive except when 
Y = 1, when the result is zero. 

Substituting equations (1) and (2)  into equation (3 
Y = l ,  

I )  = o  
XESS 

(3) 

gives: when 

(4) 

Differentiating, holding XEss  constant, and then substituting 
Y = 1 eventually resolves to: 

( 5 )  

(as we assume that n ( X E S S )  = ~(XESS) VRIXEss). 
The same technique may also be used to determine whether 

XEss can invade any population playing XEss  Y (an E S S  unable 
to do so is less likely to be found in nature as its ability to become 
established is more dependent on the starting conditions). I n  this 
case when Y = 1, 

This also gives equation ( 5 )  as a solution, indicating that the ESS 
can invade a population playing an alternatiie strategy. 

Examination of equation (5) and Figs 2 and 3 helps in 
understanding the biological meaning of these results. First, 
equation (5) shows that in populations of finite size XEss must be 
greater than X,,, (wheref'(X)= 0 )  because only when f'(XESs) is 
negative can XEss be positive and thus biologically meaningful. 
Second, note that when the cost of spite is lowered (that is, f ( X )  
is increased and lf'(X)j is decreased for values of X above the 
optimum; dotted lines, Fig. 2), the ESS level of spite is increased, 
as expected (Fig. 3). Third, as the number of competing indi- 
viduals per patch n(XESS) = f ( X &  VZ?/XESS) or the number of 
patches ( P )  increases (that is, as total potential population size 
increases), the ESS approaches the 'optimal' level, because 
f'(XEss) must get closer to  zero as Pn(X,,) - 1 increases if the 
equality in equation ( 5 )  is to  remain satisfied. Thus in popu! 
lations of infinite size spite will never evolve (Fig. 3). 

The ESS model presented above is only an approximation. ,' 
First, i t  makes the following assumptions: (1) Any rare mutant 
which secures a place in a patch always takes the full number of 
resource units dictated by the strategy it is playing (that is, it is 
never forced to take less, as in the third outcome of Fig. 1). (2) 
The last X,-playing individual to  enter a patch, if forced to take 
some fraction a of X,, has a fitness of af(X,) (a value which may 
be higher or  lower than the true fitness f (aX , ) .  We compared 
some of the results presented in Fig. 3 with those obtained using 
iterations based on precise formulations which do not make 
these assumptions, however, and found that the differences 
between the two were generally less than 1% (manuscript in 
preparation). When the discrepancies were larger, then the 
approximate solutions were usually a conservative estimate of 
the degree of spite which can be evolutionarily stable. Second, 
there are no explicit genetic constraints on the models we have 
presented for the stability and spread of the ESS. We used the 
technique of Parker and Macnair' to  show that our results are 
unaffected by assumptions of dominance or recessiveness in 
single locus diploid models (unpublished results). No attempt 
has been made to model other types of genetic control, however. 

In conclusion, we have provided an ESS model for the evolu- 
tion of spite which considers a continuous strategy set in popu- 
lations of finite size. Like Rothstein4, we found that highly 
spiteful behaviour is generally unlikely t o  occur, except in small 
populations, but our models contrast with his in indicating that 
some degree of indiscriminate spite can be an evolutionarily 
stable strategy. 
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