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Abstract

Sibling species are common in all major marine groups and habitats. Their
abundance reflects both inadequate study of morphological features of living
organisms (“pseudo-sibling species”) and divergence in habitat, life history,
and chemical recognition systems without parallel divergence in morphology.
Many marine sibling species are quite distinct genetically. Others, however,
exhibit slight genetic differences whose significance is only clear in sympatry
and in combination with other subtle but concordant patterns of differentiation.
A large number of abundant, well-studied, or economically important taxa
have recently been shown to be complexes of sibling species. The broad
habitat and geographic distributions characteristic of many marine species
require reevaluation in this context.

INTRODUCTION

Sibling species are species that are difficult or impossible to distinguish based
on morphological characters (140). Mayr was the first to broadly review
sibling species (138), the existence of which formed a central part of his attack
on the morphological species concept (139). There has never been a
comprehensive review of sibling species in the sea, and the relevant literature
is scattered and sometimes obscure. The taxonomic spectrum is enormous,
with thirty-plus phyla of marine invertebrates, in addition to marine verte-
brates, angiosperms, algae, fungi, and procaryotes. My primary focus is
marine invertebrates, and even here a complete catalogue is not feasible. 1
exclude from consideration several quasi-marine groups [mangroves, fiddler
crabs (see 111), and brine shrimp].

*The US government has the right to retain a nonexclusive, royalty-free license in and to any
copyright covering this paper.
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190 KNOWLTON

There is no unambiguous criterion for determining if species are siblings;
usage of the term varies considerably across taxonomic groups and authorities.
For this review, any species whose distinctiveness has been the source of
substantial taxonomic debate or whose discovery was based on non-
morphological characters is included under the rubric of sibling species. Thus
examples range from species that are readily distinguished morphologically
once the appropriate characters are considered (“pseudo-sibling species”) to
species that are only imperfectly isolated from each other (“semi-species”).

PREVALENCE OF MARINE SIBLING SPECIES

Marine sibling species are ubiquitous. They appear to be common in a variety
of marine invertebrates (Table 1); marine vertebrates (23, 54, 79, 121, 135,
142, 149, 189, 193, 194, 198, 249) and plants (11, 21, 87, 120, 130, 146,
160, 171) also have numerous examples. They are found from the poles to
the tropics, in most known habitats, at depths ranging from intertidal to
abyssal. Why are they so common?

Inadequate Information

Our ignorance of the basic biology of most marine species contributes in
several ways to the abundance of sibling species. First, methods of preserva-
tion for marine organisms destroy many characters taken for granted in other
groups. Soft tissues (often including feeding structures) are lost in many marine
invertebrates with hard skeletons, as is color in the many soft bodied groups
for which liquid preservative is required. This problem is exacerbated by the
fact that marine species are less accessible for observation in their natural
habitat than are terrestrial species. Second, standard experimental protocols
for analysis of the relative importance of genetic and environmental sources
of morphological variability (41) are logistically more difficult in the sea, and
in the absence of information to the contrary, considerable intraspecific
variability is considered “normal.” Finally, in many groups of marine
organisms, wide geographic ranges have been uncritically accepted as the
natural consequence of potentially broad oceanic dispersal. Although a
panmictic oceanic soup should make geographic isolation, and thereby
speciation less likely (161, 225), the actual frequency of successful long-dis-
tance dispersal is largely unknown.

Some groups are especially problematic, for example, sponges generally
(22, 196) and those taxa lacking features traditionally employed in sister
groups (22, 42, 215). Similarly, poorly known regions such as the deep sea
are likely to have many sibling species (72). Even shallow subtidal regions
have been routinely visited by scientists only since the 1960s, and the
expeditionary style of most tropical taxonomic research is not conducive to
the recognition of sibling species.
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SIBLING SPECIES IN THE SEA 197

Nevertheless, what is most perturbing about the species complexes discov-
ered to date is that so many of them are abundant, accessible, or economically
important (see below), often with a long history of continuous study. Only
in the 1980s have the species complexes in European periwinkles been
clarified (168, 236), and persistent controversy surrounds the taxonomy of
the edible European mussel (187). Thus, we are probably seeing the tip of
the iceberg in more poorly known groups and environments. Only in rare taxa
are complexes of sibling species a priori less likely; for members of these
groups, the probability of finding a mate is already low.

Biological Characteristics

Marine sibling species are not only artifacts of ignorance. Decoupling of
morphological and ecological divergence inevitably leads to sibling species.
Potential competitors with simple body plans may coexist due to differences
unrelated to morphology; the highly divergent symbiotic dinoflagellates
(zooxanthellae) (179), once thought to be a single species, are a particularly
good example. This phenomenon is not limited to morphologically simple
forms, however; coexistence of various sessile taxa may be due primarily to
differences in dispersal abilities and settlement preferences of their larvae (see
below).

The dominant role of chemical recognition systems in the sea is perhaps
the biggest obstacle to recognizing species boundaries, because our ability to
analyze this sensory modality is so limited relative to auditory and visual
systems, and because, unlike visual systems, there are few if any morpho-
logical correlates. The difference even extends to marine angiosperms that,
unlike many of their terrestrial relatives, lack visually oriented pollinators.
The role of narrowly tuned chemical recognition systems in the settlement
preferences of larvae (153, 154), in the choice of mates (69, 111, 205, 240),
and in egg-sperm recognition (161) has been implicated or suggested for a
number of sibling species complexes. Chemically mediated recognition may
also be more highly correlated with greater host specificity (63), compared
to visual recognition. The possibility that the narrow “bandwidths” character-
istic of many chemoreceptors (1) might facilitate divergence deserves further
consideration.

PATTERNS OF DIVERGENCE

Morphology

The fact that sibling species are defined on the basis of their morphological
similarity might lead one to assume that all sibling species are difficult to
distinguish on these grounds. Many past taxonomic uncertainties, however,
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stem from failure to use or consider potentially available characters. In corals,
for example, colony growth form has been underutilized as a taxonomic
character because of the false assumption that growth form is invariably highly
plastic (74, 114) and because large colonies are generally collected as small
fragments (9). Taxa that are conspicuously distinct when alive, or when
considered in their entirety, are better termed pseudo-sibling species. They
make up a substantial proportion of the examples listed in Table 1.

Even sibling species in the narrow sense often have minor morphological
differences that are only noticed once species are recognized for other reasons.
In some cases these differences are subtle but diagnostic. In others a
discriminant function analysis can reliably separate most or all members of
sibling species complexes when morphological characters individually show
considerable overlap. The most sophisticated analyses of subtle morphological
distinctions have involved modular organisms, in which intracolony measure-
ments can be used to partially factor out nongenetic variability (41, 103).
Diagnostic characters are obviously easier to use, but why some characters
tend to be diagnostic and others not is unclear. Color pattern differences in
decapods are often diagnostic (111), perhaps because they conspicuously
reflect minor developmental shifts affecting the migration of pigment-bearing
cells. Differences in pattern may, in general, be more discrete than measure-
ments or counts, which often require statistical analyses. Extensive asexual
reproduction may also be associated with smaller differences and greater
overlap between species (30).

Reproductive Isolation

For the many taxa that reproduce sexually and do not engage in widespread
hybridization, the biological species concept remains central to the recognition
of sibling species. Actual tests of reproductive isolation in marine taxa are
relatively few, however. Table 1 includes several examples of the two main
categories of prezygotic isolation: behavioral incompatibility (111, 203, 240)
and lack of synchroneity in reproductive activity. Fertilization barriers (e.g.
36, 125, 134) and postzygotic developmental failures (e.g. 36, 109, 234) are
also known. Studies of F2s are more limited due to difficulties in rearing
marine organisms to sexual maturity; most work has been done on taxa with
direct development and short generation times (e.g. 4, 203, 206). Chromo-
somal differences are also used as indirect indicators of reproductive incom-
patibility (Table 1).

Taxa that are exclusively clonal or widely hybridizing pose the biggest
problems for the biological species concept, and definitions based on
demographic exchangeability have been proposed for such cases (213).
Obligately asexual species are rare in the sea; the clearest example of
morphologically similar but ecologically distinct clones is found in the bivalve
Lasaea (101). Maintainence of morphological integrity despite widespread
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hybridization has been suggested as the reason behind the fuzzy species
boundaries in corals (175, 248) and in a group of reef fishes (67).

Genetics

Many marine sibling species have major genetic differences (e.g. values of
Nei’s genetic distance of 0.5 or greater, Table 1). This pattern is consistent
with Mayr’s (139) prediction, although pseudo-sibling species should be
discounted in this context. There are, however, a growing number of examples
that show very little genetic differentiation (e.g. Nei’s genetic distance of 0.1
or less, Table 1). Because such cases are intrinsically more difficult to identify,
it is hard to estimate their actual importance.

Species that are genetically very similar but morphologically distinctive are
not sibling species in the traditional sense (although etymologically the term
should apply). They are, however, of special interest because of their
implications for punctuated morphological evolution. The morphologically
distinct European and American lobsters, with a Nei’s genetic distance of only
0.11 (92), are one of the few known examples among marine invertebrates.

Ecology

Sympatric sibling species, when examined carefully, are often found to exhibit
distinct habitat preferences defined by depth, salinity, or exposure, or
preferences within an area for particular substrata or hosts (Table 1). The
extraordinarily broad habitat ranges characteristic of many marine “species”
need to be reexamined in this light. Successional differences between sibling
species, reflecting temporal partitioning of resources in response to seasonal
change or disturbance, are also documented (80). For allopatric sibling species,
ecological divergence is less important, and only reproductive divergence may
occur.

Divergence in life history is the most conspicuous difference between many
sibling species (Table 1), and alleged intraspecific variation in larval biology
(poecilogony) has been shown to be an artifact of unrecognized sibling species
in many other cases (95). These differences may represent equally successful,
alternative life history solutions to a given environmental regime; alternatively,
slight differences in habitat may select for marked life history changes,
particularly across sharp disturbance gradients in the intertidal and shallow
subtidal (112).

PATTERNS OF PROXIMITY

Sympatry, allopatry, and parapatry are traditionally defined on the basis of
whether individuals are “within cruising range” of each other, but the
distinctions between these categories are not always clear (71). This is
particularly true in the sea for several reasons. Patterns of dispersal are very



200 KNOWLTON

hard to document directly, and inference from characteristics of larvae and
adults is not always straightforward (34). The algal symbiont-supplied larva
of the coral Pocillopora damicornis has been interpreted both as an agent of
trans-Pacific transport (175) and as a means to permit rapid growth following
dispersal of a few centimeters (207). For many species, routine short-distance
dispersal may be punctuated by much rarer, very long distance events, leading
to complex hierarchical patterns of connections between populations (112).

Because of these uncertainties, and because different taxa have such
different dispersal capabilities, I use loose, primarily biogeographic definitions
of these terms. Thus the “sympatric” taxa of Table 1 are those for which at
least modest contact via larval or adult dispersal is conceivable, even though
the species may show distinct habitat preferences on scales ranging from
coarse (depth, exposure, salinity) to fine (different hosts or settlement sites
within an area). “Parapatric” taxa are those with largely nonoverlapping
distributions along a continuous coastline, even though the nature or even the
existence of a zone of contact is not established in many cases. The geographic
scale of parapatry may be very fine in species with limited dispersal potential
(251). “Allopatric” distributions may be transoceanic (east versus west or
north versus south) or interoceanic. Whether such distributions are actually
disjunct is discussed below. Distributions limited to particular islands or island
groups within an ocean are also in a gray zone between parapatry and
allopatry, depending on the dispersal abilities of the taxa considered.

Sibling species with at least partially overlapping ranges make up over half
of the examples cited in Table 1, undoubtedly because species boundaries are
most clearly documented in sympatry (140). For the same reason, sibling
species with small degrees of genetic divergence are almost exclusively
sympatric. The latter is not necessarily misleading, however, since allopatric
forms may show greater genetic divergence by the time they achieve
reproductive incompatibility than do sympatric forms (49).

Parapatrically distributed, slightly differentiated forms of well-known taxa
are responsible for some of the most vexing taxonomic controversies in the
sea. These taxa also include the few well-documented cases of marine hybrid
zones (the bivalves Mytilus, Mercenaria, and Macoma, and the crab Menippe,
Table 1). One of the most intensively documented is that between two Mytilus
species (223). Although hybrid zones are broader in the sea than on land,
analysis of this case suggests that the zone is in fact quite narrow, considering
the potential dispersal ability of larval mussels. Other genetic discontinuities
along coastlines may also mark the existence of sibling species, particularly
when several independent characters show the same pattern (e.g. 250).

The nature of transoceanic and interoceanic relationships clearly depends
on the dispersal abilities of the taxa being considered. Some species, for
example, are regularly carted around the world by humans (37) and are
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genuinely cosmopolitan as a consequence. Large, widely ranging marine
vertebrates also show limited genetic discontinuities across or between oceans
(10, 84). However, species with more limited dispersal abilities, whether by
swimming, larval drift, or rafting (93, 96, 184, 227), show considerable
variability in the extent of genetic connection between spatially separated
populations.

Spatially isolated tropical taxa are often separated by great distances, and
the rise of the Isthmus of Panama approximately 3-3.5 million years ago
severed all connections between the tropical Atlantic and Pacific. Taxa
separated by this barrier show substantial reproductive isolation (113, 124,
125), and some Atlantic and Pacific tropical taxa apparently diverged long
before the land barrier was complete (113, 160). Lower divergence within
than between oceans suggests that long-distance dispersal occurs at least
occasionally (116, 178), and consequently the taxonomic significance of
modest transoceanic divergence is often unclear (158).

Cold-water populations divided along an east-west axis are separated by
smaller distances than are tropical taxa. Moreover, there is no antarctic land
barrier between the oceans, and the arctic land barrier between the Pacific
and Atlantic disappeared for nonabyssal taxa with the opening of the Bering
Strait approximately 3.5 million years ago (232). Thus many more cold-water
than tropical taxa have ranges spanning both coasts of a single ocean or the
Pacific and the Atlantic (21). Divergence can be quite small between (164)
and across (11, 78) oceans for cold-water taxa, although more marked but
taxonomically ambiguous divergence does occur in some cases (7, 27).

Antitropical distributions are well known in a variety of groups (127, 233).
Gene flow across the equator is currently restricted not only by distance but
by the requirement of passage through either warm or cold but deep water.
Vermeij (233) argued that antitropical populations of marine invertebrates in
the Atlantic were last connected over three million years ago; extrapolation
from trans-isthmian studies (see above) suggests that most such cognate taxa
have achieved reproductive isolation. Connections between some antitropical
taxa appear to be considerably more recent, however [e.g. in the eastern
Pacific (127) and for algae generally (229, 233)].

IMPLICATIONS

Systematics

Defining species boundaries is the primary problem raised by sibling species,
and several conclusions emerge from the examples discussed above. First,
search for a single, universally applicable character, apart from unequivocal
demonstration of reproductive isolation, is counterproductive. Any single
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difference, be it a locus or a spine, is open to question, because differences
clearly associated with species boundaries in some situations represent
intraspecific polymorphisms in others (e.g. 27). Thus, in the absence of
clear-cut barriers to reproduction, the most compelling evidence for species
boundaries is the existence of concordant suites of unrelated morphological,
behavioral, physiological, or genetic characters (6, 119, 187, 247). Such
evidence is particularly persuasive when the same patterns differentiating taxa
can be documented in more than one site, as has been shown for the species
complexes in Mytilus (187) and Montastraea (114, 231). In cases where the
character set is more limited, extrapolating from other representatives of the
group is possible but potentially misleading, as even a single genus may
exhibit a diverse array of patterns (e.g. 13). The possibility of selection for
reproductive divergence in sympatry makes extrapolation from sympatric to
allopatric examples particularly difficult.

Many methods used to test for sibling species, like protein electrophoresis
or discriminant function analysis, profit from or require the a priori recognition
of groups whose distinctiveness can be subsequently tested. Cluster analysis
of preserved material may be used to define groups, particularly in modular
taxa (41, 103). Nevertheless, sibling species are often easier to distinguish
when alive (111, 119, 122), making two weeks in the field worth two years
in the laboratory during the initial phases of investigation. Subsequent
morphological analyses cannot be neglected if nonliving or fossil material is
to be identified, however, and may be essential for nomenclatural reasons.

Many sibling species complexes present nomenclatural nightmares, because
various forms were correctly recognized by earlier workers and subsequently
synonymized. Even when only a single name exists, unambiguous assignment
of older type specimens to one of many sympatric forms may be difficult
unless the morphological differences subsequently recognized are relatively
clearcut.

As sibling species continue to be recognized, many genera are going to
increase substantially in size; the genus Tisbe, for example, has climbed from
a few to over 63 species (133). The temptation to split a genus simply on the
basis of its size should be resisted, however, because this has no philosophical
justification and hinders subsequent retrieval of information (140). Informal
species groups, or subgenera where appropriate phylogenetic analyses support
them, are the preferred solution for genera that that may ultimately contain
hundreds or even thousands of species.

Finally, it is generally assumed that species-level taxonomy and higher
level phylogeny are decoupled. At the generic level, however, the degree of
splitting can have an important influence on the branching patterns and the
reliability of the analysis (103).
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Speciation

Evaluation of the relative importance of various modes of speciation in the
sea (225) is obviously hampered by uncertainty as to what constitutes a
species. Not only are the basic biogeographic patterns obscured by our
ignorance, but topics such as the evolutionary importance of phenotypic
plasticity (242) are impossible to evaluate when species are poorly defined.
The complexity of dispersal in the sea poses several additional obstacles to
understanding. For example, ignorance of actual dispersal distances makes
documentation of sympatric speciation much more difficult. The potential for
larval dispersal or swimming or rafting of adults facilitates remixing of species
that originated allopatrically to a greater extent than in terrestrial or freshwater
groups, so that reconstructions of past distributions are more difficult.
Nevertheless, a few general comments can be made, particularly for those
sibling species where genetic evidence suggests relatively recent origins.

One of the clearest examples of the classic or “dumbbell” model of allopatric
speciation is the evolution of reproductive incompatibility between numerous
tropical eastern Pacific and Caribbean taxa separated by the rise of the Isthmus
of Panama 3.0 to 3.5 million years ago (113, 124, 125). This model system
has two important limitations, however. First, oceanographic differences
between the two oceans are extreme, so that the effects of selection and genetic
drift cannot be readily distinguished. Second, it is difficult to generalize from
this example of an impenetrable barrier to situations where sporadic immigra-
tion occurs.

Very occasional arrivals of small founder populations to isolated islands
could result in speciation via founder effects. Compatible with this scenario
is the substantial (and probably underestimated) endemism at the species level
in the Galapagos (104) and Hawaiian (98, 106, 107) archipelagoes. The best
direct evidence of this process for a marine invertebrate is the rapid
development of reproductive isolation in a laboratory culture of a polychaete
(239). Substantial genetic divergence has also been documented for a small
founding population of littorine snails (110), but the reproductive biology of
this population has not been examined. Many of the sibling species complexes
in Table 1 have larvae with limited dispersal ability and sedentary or sessile
adults with the potential for occasional rafting. This suite of characters should
facilitate founder-event speciation followed by subsequent reestablishment of
sympatry.

Other, more controversial modes of speciation should also be considered.
The large number of sibling species complexes with different depth distribu-
tions could reflect clinal speciation (225); even within the intertidal and
shallow subtidal, gradients in selection pressures might be steep enough to
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overide the effects of dispersal for sessile or sedentary taxa with direct
development. The same process might operate on a broader latitudinal scale
for taxa with planktonic larvae, particularly where current patterns or salinity
gradients partially disrupt gene flow. Marine species with narrow host or
substratum specificities recall suggested examples of sympatric speciation on
land (57, 58, 206). Speciation in hosts and symbionts may (50) or may not
(179) be coupled.

The role of sexual selection in driving divergence of reproductive recogni-
tion systems (241) is receiving growing attention for marine organisms. The
process may occur via interacting adults (111, 205, 240) or gametes (150,
161). In both cases recognition systems are subjected to the opposing pressures
of sexual selectivity versus finding a mate. One might expect recognition
systems at the gamete level to be somewhat less narrowly tuned, because
short-lived sperm and eggs in sea water have fewer alternatives than do
longer-lived adults. Molecular diversity of the proteins governing egg-sperm
interactions is surprisingly high, however, and may play an important role in
speciation of marine invertebrates with the potential for regular long-distance
dispersal (161). Sexual selection may also promote increasing host specificity
(47) when mating occurs on the host (e.g. 57, 58).

Ecology

The abundance of sibling species in the sea has ecological as well as
evolutionary implications. Perhaps most obvious is the impact of sibling
species on global marine biodiversity (137), although the magnitude of the
effect is difficult to estimate. For example, the polychaete Chaetozone setosa
is described as cosmopolitan with a depth distribution ranging from the
intertidal to 4436 m, but a single study of three sites spanning 65 km (two
intertidal and one at 80 m) indicated that each had a distinct species (46). The
increase in diversity from discoveries of sibling species is often four-fold or
greater in comprehensive studies of a single region (e.g. Hydractinia, Actinia,
Ophryotrocha, Capitella, Macoma, Doto, Calanus, Chthamalus, Tisbe,
Jaera, Panopeus, Stylopoma, Echinometra). As a very rough estimate, one
can expect the number of marine species to increase by an order of magnitude
if sibling species are considered.

Many of the theoretical issues that have dominated ecology for several
decades—such as competition—depend on a clear understanding of species.
The examples reviewed above indicate that species are more specialized and
more geographically circumscribed in the sea than has been appreciated
previously. Thus, lottery models of competitively equivalent species (43) are
potentially less relevant than classical competition theory in explaining the
coexistence of species, and the evolution of highly specialized, locally
appropriate competitive mechanisms (e.g. 35) is conceivable. Moreover, the
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prevalence of life history divergence between sibling species suggests that
disturbance is better viewed as a resource for which competition occurs (85),
rather than as an agent disrupting competitive interactions (the more traditional
marine perspective).

Nor can field ecologists overlook these taxonomic “details,” because
growing evidence suggests that competitors and predators are not blind to the
differences among the sibling species with which they interact. Scattered
throughout the literature are references to differences among sibling species
in their competitive abilities (89, 114, 133, 174, 210) and relationships with
symbionts and predators (2, 22, 73, 89, 152, 181, 192).

Indicator, Managed, and Model Species

Failure to recognize sibling species results in bad science, both basic and
applied. For example, at least three marine taxa widely used as indicators of
environmental quality have been found to consist of several sibling species
whose differences have important implications for their use in bioassays (83,
114, 128). Sibling species have been discovered in a number of fisheries (e.g.
Crassostrea, Nototodarus, Penaeus, Menippe in Table 1; see also 121, 135,
166, 193, 194, 198), with obvious implications for management. Conservation
measures currently being developed for marine environments can also be
jeopardized by failure to recognize sibling species (19). Finally, many of the
taxa listed in Table 1 have been used as model systems for basic biological
investigations where mixtures of unrecognized sibling species could seriously
confound interpretations of results.

There is another, more positive side to this coin, however. Species
complexes provide ideal and largely untapped grist for the mill of comparative
biology. The considerable variation in reproductive biology exhibited within
species complexes provides a perfect framework for testing theories on life
history evolution (112), and there are many other possible applications. Suites
of sibling species should be viewed as nature’s gift of replicated, well-con-
trolled variation, rather than as a taxonomic nuisance.

CONCLUSIONS: ORNITHOLOGY FOR THE
COPEPODOLOGIST

In the preceding review I have argued that sibling species are rife in marine
environments, and that failure to recognize them cripples evolutionary and
ecological understanding of the sea. In contrast, Mayr (139) estimates that
only 5% of birds are sibling species. I conclude by offering a marine
transmogrification of ornithological research for those readers who remain
unconvinced of the significance of this difference.

Consider a world where birds are only occasionally seen alive by the handul



206 KNOWLTON

of scientists who study their alpha taxonomy. They arrive in museums either
as colorless corpses in jars of Formalin, or as skeletal material alone. The
bills are often delicate structures whose normal shape cannot be reliably
inferred from preserved material. Growth is often indeterminate, and weather
can affect both the size and shape of the skeleton. Field observations are
generally limited to a few hours a day, and identification keys, where they
exist, generally lack information on color pattern and bill shape. Communi-
cation between individuals probably occurs via pheromones, as there are few
auditory or visual displays. Contact chemicals or micrometereological condi-
tions appear to shape preferences for nesting and feeding sites.

Under such circumstances would we even know of Darwin’s finches or
MacArthur’s warblers? Probably not, with obvious implications for our
understanding of the natural world. Not only marine research suffers,
however. Comparisons between marine, terrestrial, and freshwater environ-
ments (88, 112, 161, 209, 225) illuminate the workings of ecological and
evolutionary processes generally. Are fish like birds, corals like plants, and
shrimp like insects, and if so why? The answers will elude us until we know
what the fish, corals, and shrimp really are.
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