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Abstract

The tools of molecular genetics have enormous potential for clarifying the nature and age of species boundaries
in marine organisms. Below I summarize the genetic implications of various species concepts, and review the
results of recent molecular genetic analyses of species boundaries in marine microbes, plants, invertebrates and
vertebrates. Excessive lumping, rather than excessive splitting, characterizes the current systematic situation in
many groups. Morphologically similar species are often quite distinct genetically, suggesting that conservative
systematic traditions or morphological stasis may be involved. Some reproductively isolated taxa exhibit only
small levels of genetic differentiation, however. In these cases, large population sizes, slow rates of molecular
evolution, and relatively recent origins may contribute to the difficulty in finding fixed genetic markers associated
with barriers to gene exchange. The extent to which hybridization blurs species boundaries of marine organisms
remains a subject of real disagreement in some groups (e.g. corals). The ages of recently diverged species are
largely unknown; many appear to be older than 3 million years, but snails and fishes provide several examples
of more recent divergences. Increasingly sophisticated genetic analyses make it easier to distinguish allopatric
taxa, but criteria for recognition at the species level are highly inconsistent across studies. Future molecular
genetic analyses should help to resolve many of these issues, particularly if coupled with other biological and
paleontological approaches.

Introduction

Taxonomists have described species for centuries
without the aid of protein electrophoresis, RAPDs,
RFLPs, AFLPs or DNA sequencing. Indeed, given
the scarcity of taxonomists relative to the number of
undescribed species, most species descriptions still
do not involve molecular genetic analyses, and will
not for the foreseeable future. Such analyses are ex-
pensive, and thus their application is most justified
when other types of data yield equivocal results. Nev-
ertheless, genetics and systematics are increasingly
intertwined at all levels of the Linnean hierarchy. In
this paper I will explore what molecular genetics can
tell us about diversity at the species level in the sea.
In particular, I will focus on the role of molecular
genetics in recognizing cryptic or sibling species (i.e.
species that are difficult to distinguish using more tra-
ditional techniques). Before doing so, however, a few

words are necessary concerning what is meant by a
species.

A brief taxonomy of species concepts and how they
apply to marine organisms

Genetics can contribute to our understanding of spe-
cies as we define them, but does not itself provide the
definition. Mayr (1963) developed a compelling argu-
ment for using reproductive criteria to define species,
but the rise of cladistics has challenged the supremacy
of his view. Many other species concepts have also
been proposed, 22 according to a recent survey (May-
den, 1997). These different species concepts have
distinct implications for the use and interpretation of
genetic data, although some of the differences are
more apparent than real (Avise & Wollenberg, 1997;
De Queiroz, 1998).
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Mayr’s biological species concept defines species
as groups of actually or potentially interbreeding in-
dividuals, with boundaries between species defined by
intrinsic barriers to gene flow that have a genetic basis.
These barriers may be expressed through their effects
on: (1) key features of the mating system (e.g. by influ-
encing mate choice, gamete attraction or fertilization,
or the timing of reproduction); (2) other ecological
characteristics, such as habitat preference, which in-
fluence the probability of mating; or (3) developmental
pathways, so that inviability or sterility interfere with
gene exchange in subsequent generations. Although
the existence of hybridization is often viewed as a
reason for discarding the biological species concept,
this is not consistent with Mayr’s recommendations
(e.g. Mayr & Ashlock, 1991).

For the vast majority of marine organisms we do
not know the genetic basis of reproductive barriers
(Palumbi, 1994). The best studied examples concern
the proteins involved in egg-sperm interactions in sea
urchins (Metz & Palumbi, 1996; Metz et al., 1998a)
and gastropods (Metz et al., 1998b; Swanson & Vac-
quier, 1998; Hellberg & Vacquier, 1999). Gastropods
represent a particularly elegant model system because
both the sperm protein and the egg receptor have
been identified. However, this level of understanding
is not a viable short-term goal for most marine or-
ganisms. Fortunately for systematists, reproductively
isolated taxa will, with time, accumulate other fixed
genetic differences that can be revealed using more
standard and accessible genetic techniques. The con-
cordance of several independent genetic characters
provides particularly strong evidence for the existence
of reproductive barriers in sympatry because other
explanations for their concordance are generally less
plausible (Avise & Ball, 1990).

Despite the intuitive appeal of the biological spe-
cies concept, the phylogenetic species concept has
become increasingly popular, in part associated with
the success of cladistic methods within systematics
as a whole. It has been presented under a variety
of guises (De Queiroz, 1998) but, in its simplest
and most extreme form, species are defined as min-
imum diagnosable units (Cracraft, 1989). Any type of
diagnostic genetic difference can thus in principle be
used to define a species, with the proviso that entities
known to interbreed (e.g. males and females within a
single population) do not qualify for separate species
status. In sympatry, the biological and phylogenetic
species concepts are equivalent, because fixed genetic
differences imply barriers to gene exchange, and bar-

riers to gene exchange imply some sort of genetic
difference (Knowlton & Weigt, 1997).

In allopatry, however, biological and phylogenetic
species can be potentially quite different (Knowlton
& Weigt, 1997). This is because the biological spe-
cies concept requires that genetic differences be such
that isolated populations are not potentially interbreed-
ing, while phylogenetic species can be defined by any
fixed difference, regardless of its triviality. Avise and
Wollenberg (1997) argue that any approach based on
one or a small number of diagnostic genetic charac-
ters is nonsensical because of the enormous resolving
power of genetic techniques and the diversity of pos-
sible genealogical pathways for individual loci. They
suggest, however, that a phylogenetic species concept
based on multiple loci is compatible with the biolo-
gical species concept, because reproductive barriers
will emerge during the lengthy period of geographic
isolation that is required for many loci to acquire fixed
(diagnostic) differences.

Of the remaining species concepts, Templeton’s
(1989) cohesion species concept most explicitly ad-
dresses the limitations of the biological species
concept, which he summarizes as being associated
with either too much sex (e.g. extensive hybridiza-
tion) or too little sex (e.g. asexual taxa or species
with highly fragmented populations). In both cases,
he recommends use of the concept of ‘demographic
exchangeability’, which in essence involves defining
species based on the sharing of comparable ecological
niches. For example, when discrete forms exist des-
pite extensive hybridization, he suggests recognizing
those units that can be defined by shared ecological
constraints. Similarly, for taxa with many isolated
populations due to limited dispersal or clonal propaga-
tion, ecological distinctiveness provides the criterion
for recognition at the species level. Although he does
not explicitly address problems of the phylogenetic
species concept, trivial genetic differences with no
obvious ecological significance would presumably go
unrecognized using the cohesion species concept.

Templeton’s demographic exchangeability is not
an explicitly genetic concept, although genetics may
be invaluable for identifying situations where it is
particularly appropriate (e.g. extensive hybridization,
highly subdivided population structure, or clonal re-
production). However, in some groups, the level of
genetic differentiation may itself serve as a proxy
for estimating likely ecological divergence. For ex-
ample, the sexual habits of many microbes do not lend
themselves to species definitions based on reproduc-
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tive barriers and, for a number of groups, our only
information on these organisms are DNA sequences
because they are unculturable at present. Thus Emb-
ley and Stackebrandt (1997) discuss a rule of thumb
whereby prokaryote taxa be recognized at the spe-
cies level when their 16S rDNA sequences are less
than 98% similar. Implicit in this approach is the idea
that substantial genetic divergence implies ecological
differentiation of the type specified by the cohesion
species concept, but the converse (small genetic differ-
entiation) does not necessarily imply little ecological
divergence (see below).

Among marine metazoans, strictly clonal repro-
duction is rare (Hughes, 1989), although the clam
Lasaeaprovides a clear case of some niche diversi-
fication among ancient asexual lineages (Ó Foighil &
Smith, 1996) for which the cohesion concept may be
well suited. A much more widespread situation favor-
ing application of the cohesion species concept is that
of extremely limited dispersal (Knowlton & Jackson,
1993). When highly philopatric species live in discrete
habitats separated by uninhabitable areas, large num-
bers of ecologically similar but genetically distinctive
populations can result, some of which also exhibit re-
productive incompatibilities. The copepodTigriopus
californicus(Burton et al., 1999) and the isopodExcir-
olana braziliensis(Lessios & Weinberg, 1994; Lessios
et al., 1994) provide compelling examples of the po-
tential utility of the cohesion species concept for such
situations, and there are undoubtably many others.

The extent of hybridization in the sea remains a
subject of controversy (Gardner, 1997), so that the ex-
tent to which it impinges on species concepts remains
uncertain. Molecular genetic techniques are ideally
suited for its detection (see Rieseberg & Linder, 1999
for a critical evaluation), and a number of marine
examples are available (e.g. Liu et al., 1991; Bert
& Arnold, 1995; Brown, 1995; Bert et al., 1996;
Gardner, 1996; Lessios & Pearse, 1996; Foltz, 1997;
Röhner et al., 1997; Quesada et al., 1998; Väinölä &
Vainio, 1998; Comesaña et al., 1999). Although only
3 of the 108 cases summarized by Gardner (1997) em-
ployed genetic methods, he concludes that (1) rates of
hybridization in the sea and on land are roughly com-
parable, and that (2) in the sea, sporadic hybridization
is more common than either well-defined hybrid zones
between distinct, allopatric taxa or hybrid swarms.
The latter provide the biggest challenge for species
concepts, a problem that has been explicitly discussed
for corals (see below).

Examples of recent genetic analyses

Several recent reviews have listed cases where genetic
analyses have played a critical role in the recognition
of species boundaries (Knowlton, 1993; Thorpe &
Solé-Cava, 1994). Rather than dwell on previously-
covered examples, I will highlight others not covered
in these reviews and, for a number of groups, at-
tempt to summarize what genetic techniques have
taught us to date. This summary is not intended to
be comprehensive, but rather to point out interesting
developments and give a feeling for the kinds of res-
ults and problems that have been encountered. I will
focus primarily on marine invertebrates, with a few
examples being drawn from other marine groups.

Bacteria and single-celled eukaryotes

Our understanding of the world of marine microbes
has been transformed by the tools of molecular ge-
netics. Major surprises include the discovery of en-
tirely new major groups, never before cultured, based
on rDNA sequences obtained from environmental
samples (Embley & Stackebrandt, 1997; Potter et al.,
1997; Rappé et al., 1998; Hinrichs et al., 1999). These
findings are more akin to the discovery of new higher
taxa than to recognition of diversity at the species
level.

Nevertheless, in some cases, taxa formerly con-
sidered to be a single species have been shown to
harbor enormous and unsuspected genetic diversity.
One striking example concerns dinoflagellates asso-
ciated with marine invertebrates, conventionally re-
ferred to asSymbiodinium microadriaticum. Only in
the last decade has it been discovered that they ex-
hibit genetic differences based on small subunit rDNA
sequences comparable to those observed between dif-
ferent families or orders of free-living dinoflagellates.
These genetically defined groups have characteristic
differences in depth distribution (and other ecological
attributes) as well (Rowan, 1998). Recently, taxa of
cyanobacteria have also been shown to exhibit depth
zonation (Moore et al., 1998; Ferris & Palenik, 1998),
but in this case the genetic differences are so small
that they might not normally be attributed to species
level differentiation (sensuEmbley & Stackebrandt,
1997). Cryptic species of planktonic foraminifera that
differ in a variety of biological features have also
been discovered through the use of genetic techniques
(Huber et al., 1997). The cohesion species concept
is in principle highly appropriate in many of these
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cases. However, the relationship between genetic and
ecological divergence at various levels of genetic dif-
ferentiation is largely unknown for most microbial
groups.

Multicellular plants

Marine angiosperms have been examined genetically,
but recent studies have focused primarily on popu-
lation genetics and clonal structure rather than alpha
taxonomy (e.g. Kirsten et al., 1998). They will not
be discussed further here. Marine algae, in contrast,
provide a number of examples where genetic analyses
have played a major role in clarifying species boundar-
ies. Genetic techniques are particularly useful because
recognizing species of marine algae is often compli-
cated by their morphological simplicity (Van Oppen et
al., 1996), morphological plasticity (e.g. Bakker et al.,
1995a; Benzie et al., 1997; Blomster et al., 1998), and
heteromorphic life histories.

Genera recently examined using genetic tech-
niques includePorphyra (Lindstrom & Cole, 1992;
Stiller & Waaland, 1993; Brodie et al., 1996),Phy-
codris (Van Oppen et al., 1995a,b),Gracilariopsis
(Goff et al., 1994),Gracilaria (Goff et al., 1994),
Pikea(Maggs & Ward, 1996),Cladophora(Bakker et
al., 1995a,b),Caulerpa(Benzie et al., 1997; Pillmann
et al., 1997; Olsen et al., 1998) andEnteromorpha
(Blomster et al., 1998). These taxa include eco-
nomically important species (Porphyra, Gracilaria,
Gracilariopsis), as well as bioindicators of pollution
(Enteromorpha) and pest species (Caulerpa). Genetic
techniques have been invaluable in evaluating the pos-
sibility of species introductions (Maggs et al., 1992;
Van Oppen et al., 1995b; Maggs & Ward, 1996; Pill-
mann et al., 1997; Olsen et al., 1998), which are
common among algae.

Although allozymes continue to be used in alpha
systematics (e.g. Lindstrom & Cole, 1992; Van Oppen
et al., 1995a; Benzie et al., 1997), DNA based tech-
niques (especially sequencing of nuclear rRNA and
chloroplast Rubisco genes) are becoming increasingly
prominent. The ability to characterize dried herbarium
material and compare it to other collections of uncer-
tain status makes DNA-based techniques particularly
attractive (e.g. Goff et al., 1994). On the other hand, in
at least one case allozymes provided greater resolution
than RAPDs (Van Oppen et al., 1995a). Diagnostic
allozyme loci are often monomorphic within species,
yielding low heterozygosities (e.g. Lindstrom & Cole,
1992; Van Oppen et al., 1995a; Benzie et al., 1997).

Many pairs of cryptic taxa are very distinct ge-
netically (e.g. Olsen et al., 1987), and are not even
necessarily sister species (Maggs et al., 1992; Goff et
al., 1994; Bakker et al., 1995a; Blomster et al., 1998).
In some of these cases, other kinds of differences had
been noted prior to genetic studies (e.g. Brodie et al.,
1996; Blomster et al., 1998), while, in other cases
the genetic identification of cryptic species came as
a complete surprise (Stiller & Waaland, 1993; Benzie
et al. 1997; Pillman et al., 1997). Not all cryptic spe-
cies are highly divergent genetically, however (Brodie
et al., 1996), and genetic data have also been used
to synonymize morphotaxa (Lindstrom & Cole, 1992;
Blomster et al., 1998).

Porifera

Sponges are another group where morphological sim-
plicity (Klautau et al., 1999) and morphological plas-
ticity have led to uncertainties in systematics at the
species level. Recent genetic studies include inves-
tigations of cryptic species inPetrosia (Bavestrello
& Sarà, 1992),Tethya(Sarà et al., 1993),Clathrina
(Klautau et al., 1994),Cliona (Barbieri et al., 1995),
Plakina (Muricy et al., 1996),Spirastrella (Boury-
Esnault et al., 1999),Cinachyrella (Lazoski et al.,
1999), andChondrilla (Klautau et al., 1999). Solé-
Cava and Boury Esnault (1999) review the results of
these and earlier studies (63 in total) reporting levels of
interspecific genetic divergence based on allozymes.
As they note, almost all of these studies focused
on taxonomically problematic groups where species
boundaries were deemed unclear.

Most studies involved no more than 12 scorable
loci, and substantial differences (usually one or more
diagnostic loci) were generally detected. In some cases
these differences were larger than those often reported
between different genera of sponges. Genetic differ-
ences were typically associated with morphological
differences that were also diagnostic, although rela-
tively subtle and/or generally not recognized as ‘signi-
ficant’ (e.g. color) in traditional approaches to sponge
taxonomy. One sympatric pair (twoSuberitesspe-
cies that differ in color) were, however, exceptionally
closely related (Nei’s I of 0.98).

The overwhelming message from these studies
is that sponge biodiversity at the species level has
been seriously underestimated. So-called cosmopol-
itan taxa probably consist of complexes of regionally
more restricted forms (e.g. Klautau et al., 1999),
and sympatric morphotypes defined by colony mor-
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phology, color, habitat, or subtle skeletal differences
are probably non-interbreeding. DNA analyses have
not been applied to the problem of cryptic species
in sponges, and some PCR-based techniques that are
routinely used in other groups (e.g. RAPDs) are more
difficult to use in sponges because of the symbionts
embedded in the tissues. As technical difficulties are
resolved, however, the extent of diversity may increase
further, because the sometimes very large genetic dif-
ferences observed with protein electrophoresis suggest
that current approaches are touching only the tip of the
iceberg.

Cnidaria

Several important anthozoan genera have been the
subject of recent genetic studies of species boundaries:
the anemonesEpiactis(Edmands, 1996),Anthopleura
(McFadden et al., 1997), andActinia (Monteiro et al.,
1997); the coralsMontipora(Stobart & Benzie, 1994);
Montastraea(Lopez & Knowlton, 1997; Lopez et al.,
1999; Medina et al., 1999), andPlatygyra(Miller &
Benzie, 1997); the octocoralsBriareum (Brazeau &
Harvell, 1994) andPlexaura (Lasker et al., 1996);
the soft coralAlcyonium(McFadden, 1999); and five
genera of zoanthids (Burnett et al., 1997). Genetic
analyses in other cnidarian classes are largely lack-
ing, with the hydrozoanMillepora (Manchenko et al.,
1993; Amaral et al., 1997) and the scyphozoanAurelia
(Greenberg et al., 1996) being the primary examples.

In apparent contrast to the situation with sponges,
where genetic differences between sibling species are
usually high, there are a number of well-studied cases
of sympatric taxa that show very low levels of ge-
netic differentiation, including the absence of fixed
allozyme differences (Solé-Cava et al., 1985; Solé-
Cava & Thorpe, 1992; Brazeau & Harvell, 1994;
Weil & Knowlton, 1994; Edmands, 1996; McFad-
den et al., 1997; Monteiro et al., 1997). The low
level of differentiation observed between some sym-
patric species makes the interpretation of negative
evidence in other groups (e.g. Burnett et al., 1997;
Miller & Benzie, 1997) especially difficult. Moreover,
in the Montastraea annularisspecies complex, the
three taxa show no differentiation in ITS and COI
sequences (Lopez and Knowlton, 1997; Medina et
al., 1999), although one of these taxa has recently
been clearly distinguished after screening of numerous
AFLP primers (Lopez et al., 1999).

One possible reason for the small degree of genetic
differentiation between what appear to be reproduc-

tively isolated taxa is that rates of molecular evolution
in this group may be unusually slow (Romano &
Palumbi, 1997). In corals, for example, rates of diver-
gence of the mtDNA COI and cyt b genes appear to be
less than 0.1% per million years (Medina et al., 1999;
Van Oppen et al., 1999), compared to 2% per million
years in many vertebrates (Avise et al., 1998), and 1.5–
0.5% for crustaceans and fish separated by the Isthmus
of Panama (Knowlton & Weigt, 1998; Schubart et al.,
1998). Pont-Kingdon et al. (1998) report the existence
of a homologue to the bacterial MutS gene (part of a
mismatch repair pathway) in the mitochondria of an
octocoral; although in principle this could contribute
to low rates of molecular evolution, its absence in the
sea anemoneMetridiummakes its general significance
for Cnidaria unclear.

Alternatively, the lack of genetic differentiation
could reflect the effects of regular hybridization. This
perspective has been strongly argued by Veron (1995)
for corals, many of which reproduce in mass spawning
events at approximately the same time. Some genetic
and chromosomal data have been interpreted from
this point of view (Kenyon, 1997; Odorico & Miller,
1997).

This controversy is likely to persist for some time
for several reasons. First, it is intrinsically difficult to
distinguish between reproductively isolated taxa that
have very few fixed genetic differences and taxa that
are only imperfectly isolated. In both cases, most
loci will show either no significant differences or only
modest frequency differences. The weakness of neg-
ative evidence is particularly evident in this situation,
as has been well illustrated by the effort required to
find genetic differences between some plants (Howard
et al., 1997). Second, the existence of puzzling pat-
terns in existing data sets [e.g. highly divergent nuc-
lear ITS-1 and mitochondrial 16S rDNA sequences
within single individuals or single species (Odorico &
Miller, 1997; Romano & Palumbi, 1997; Takabayashi
et al., 1998)] suggests that conventional genetic as-
sumptions may be inappropriate for cnidarians, further
complicating interpretation of results.

Polychaeta

Most of the previously reviewed studies of poly-
chaete sibling species did not include genetic analyses
(Knowlton, 1993). The list of genera analyzed genet-
ically is now longer, and additions includePolydora
(Mustaquim, 1988; Manchenko & Radashevsky, 1993,
1994, 1998),Capitella (Baoling et al., 1991; Gamen-
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ick et al., 1998),Marenzellaria(Bastrop et al., 1998),
Arenicola (Cadman & Nelson-Smith, 1993),Eulalia
(Bonse et al., 1996),Petitia (Van Soosten et al.,
1998), Nereis (Rodriguez-Trelles et al., 1996),Ner-
illa (Schmidt & Westheide, 1997), andHediste(Fong
& Garthwaite, 1994; Abbiati & Maltagliati, 1996;
Rohner et al., 1997; Sato & Masuda, 1997). Neverthe-
less, genetic information remains scanty, even for the
genusCapitella, despite the highly influential early pa-
per by Grassle and Grassle (1976) and the importance
of this group for pollution studies.

Most genetic studies of polychaetes are based on
protein electrophoresis, and very large genetic dis-
tances are not uncommon.Petitia and Nerilla have
been analyzed by RAPDs andMarenzelleriaby mi-
tochondrial 16S rDNA sequencing. In many cases,
morphological differences are very subtle, although
sympatric forms often have clear differences in life
history or ecology. Studies of allopatric forms of-
ten leave many unanswered questions, particularly
when studied with techniques like RAPDs for which
there is no established relationship between genetic
divergence and reproductive isolation or ecological
distinctiveness. However, the finding of reproductive
incompatibility associated with very small levels of
allozyme divergence between populations (e.g. Nei’s
D < 0.01; Rice & Simon, 1980) suggests that one
cannot simply ignore subtle levels of differentiation.
More breeding studies (e.g. as in Gamenick et al.,
1998) would be particularly informative in this regard.
The many small polychaetes that lack a dispersive
phase may be genetically structured like the cope-
pod Tigriopus, making the cohesion species concept
particularly appropriate (see above).

Mollusca

Mollusks are arguably the best genetically studied
phylum of marine invertebrates. Hence, the follow-
ing summary of analyses of species boundaries is far
from complete and highlights only the most recent
work where multiple studies exist. Mollusks have also
provided a superb model system for understanding the
evolution of the gamete recognition proteins that may
underlie the origin of reproductive barriers between
some species (Metz et al., 1998b; Swanson and Vac-
quier, 1998; Hellberg & Vacquier, 1999). Finally,
mollusks have an excellent fossil record, so that there
is enormous potential for combining genetic and pale-
ontological approaches (e.g. Collins et al., 1996; Reid
et al., 1996).

Among the bivalves, species in the genera
Crassostrea (e.g. Boudry et al., 1998; Hare &
Avise, 1998) and particularlyMytilus (e.g. Beynon &
Skibinksi, 1996; Gardner, 1996; Quesada et al., 1998;
Comesaña et al., 1999) have been especially well
studied. Other recently analyzed groups of bivalves
include Geukensia(Sarver et al., 1992),Cardium
(Hummel et al., 1994),Lithophaga(Mokady et al.,
1994), Chamelea(Backeljau et al., 1994), mytilids
and three vesicomyid genera from the deep sea (Crad-
dock et al., 1995; Peek et al., 1997), andDonax
(Adamkewicz & Harasewych, 1996). Species of gas-
tropods have been even more extensively investigated.
The genusLittorina, for example, has a long history of
study [see recent works by Reid et al. (1996), Grahame
et al. (1997), Tatarenkov & Johannesson (1998), and
Kyle & Boulding (1998)]. Other genera that have been
recently analyzed includeHydrobia(Ponder & Clark,
1988), Stramonita(Liu et al., 1991),Alviniconcha
(Denis et al., 1993),Trochus(Borsa & Benzie, 1993),
Tectus(Borsa & Benzie, 1993),Austrocochlea(Par-
sons & Ward, 1994),Drupella (Johnson & Cumming,
1995), Columbella(Oliverio, 1995),Patella (Côrte-
Real et al., 1996a,b; Ridgway et al., 1998),Nassarius
(Sanjuan et al., 1997),Nucella (Kirby et al., 1997;
Marko, 1998), andDendronotus(Thollesson, 1998).
Cephalopods are comparatively less studied, but gen-
era where species boundaries have recently been re-
vised or identified based on genetic analyses include
Photololigo (Yeatman & Benzie, 1994),Nautilus
(Wray et al., 1995),Sepioteuthis(Izuka et al., 1996)
andIllex (Carvalho & Nigmatullin, 1998).

Molluscan alpha taxonomy has long attracted the
attention of professional and amateurs alike because
shells are readily collected and studied. However,
differences in shell morphology are often the result
of phenotypic plasticity, so that many past descrip-
tions of species were unjustified. Consequently, the
number of genetic studies that have resulted in the
synonymization of species is probably higher for mol-
lusks than most other marine invertebrate phyla. The
above-mentioned studies ofDonax (Adamkewicz &
Harasewych, 1996) andNautilus(Wray et al., 1995)
are but two examples of numerous cases where dis-
tinctions between sympatric taxa based on shell mor-
phology were not supported by genetic data. On the
other hand, genetic data have also demonstrated that
minor differences in shell morphology (or other char-
acters) can sometimes be taxonomically important
(e.g. Borsa & Benzie, 1993; Mokady et al., 1994;
Parsons & Ward, 1994; Johnson & Cumming, 1995;
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Oliverio, 1995; Izuka et al., 1996; Sanjuan et al.,
1997; Thollesson, 1998). The unexpected discovery
of highly divergent sympatric taxa within morpholo-
gically uniform groups is uncommon in mollusks, but
it does occur; for example, in the deep sea (Craddock
et al., 1995; Peek et al., 1997) and in cephalopods
(Yeatman & Benzie, 1994).

The problem of the uncertain basis for shell vari-
ability is exacerbated in allopatry, where genetic
and environmental differences are often confounded.
Moreover, the same geographic comparison can re-
veal little or no genetic differentiation in some taxa
and substantial genetic differentiation in others, some-
times even within the same genus (Adamkewicz
& Harasewych, 1996; Côrte-Real et al., 1996a,b).
Along continuous coastlines, the existence of narrow
zones of overlap with little evidence of hybridization
provides definitive evidence for species boundaries
(Liu et al., 1991; Ridgway et al., 1998), but far more
complex patterns of hybridization are sometimes ob-
served (e.g.Mytilus, see below), and in other cases no
zone of overlap exists (see Discussion).

Several molluscan genera have been extensively
studied using a variety of approaches, and the com-
plexity of the resulting data sets is sobering. Studies of
Mytilushave revealed a variety of patterns of hybridiz-
ation depending on the taxa and the geographic locale,
as well as a bizarre sex-linked mitochondrial trans-
mission system (Beynon & Skibinksi, 1996; Gardner,
1996; Quesada et al., 1998; Comesaña et al., 1999).
The multipronged attack on the population structure
of Crassostreaacross the Gulf of Mexico and At-
lantic coast of North America (see most recently Hare
& Avise, 1998) has shown that different techniques
can give fundamentally different answers for reasons
that still remain unclear. InLittorina, closely related
pairs of taxa that occur in different habitats have in
some studies been shown to exhibit reproductive bar-
riers across environmental gradients within a site but,
in other cases, samples from different environments
within sites are more similar genetically than are those
samples which are geographically isolated but envir-
onmentally similar (Kyle & Boulding, 1998; Tataren-
kov & Johannesson, 1998). Some of this complexity is
probably due to the proximity of the divergences being
studied in all three genera (see Discussion), but is such
complexity lying below the surface in the many other
groups that have yet to be investigated so intensively?

Crustacea

Recent genetic analyses of species boundaries in deca-
pod crustaceans include studies of the lobstersHo-
marus(Kornfield et al., 1995),Jasus(Ovenden et al.,
1997) andPanulirus (Sarver et al., 1998); the crabs
Pinnotheres(Stevens, 1990),Liopetrolisthes(Weber
and Galleguillos, 1991),Helice (Irawan et al., 1993),
Sesarma(Felder & Staton, 1994),Uca (Felder and
Staton, 1994),Emerita (Tam et al., 1996),Scylla
(Fuseya & Watanabe, 1996),Carcinus(Geller et al.,
1997) andMenippe (Bert et al., 1996; Schneider-
Broussard et al., 1998); and the shrimpsAlpheus
(McClure & Greenbaum, 1994; Knowlton & Weigt,
1997, 1998),Synalpheus(Duffy, 1996), andRimi-
caris (Shank et al., 1998). Studies of other crustaceans
include those of four genera of calanoid copepods
(Bucklin et al., 1995, 1996, 1998); the isopodsCya-
thura (Brown et al., 1988),Sphaeroma(Laulier, 1989)
and Idotea (Charfi-Cheikhrouha et al., 1998); the
amphipodsThemisto(Schneppenheim & Weigmann-
Haass, 1986),Abyssorchomene(France, 1994) and
Eurythenes(France & Kocher, 1996) and the mysid
Mysis(Väinölä & Vainio, 1998).

Most genetic analyses of species boundaries in
Crustacea confirm or reveal the existence of cryptic
species, some of which are distinguished by surpris-
ingly large genetic differences given their morpholo-
gical similarity (e.g. Palumbi & Benzie, 1991; Bucklin
et al., 1995; Knowlton & Weigt, 1998; Sarver et al.,
1998). However, some taxa have smaller genetic dif-
ferences than expected (Kornfield et al., 1995), and
others have been shown to be conspecific based on
the absence of genetic differentiation between size
classes (Shank et al., 1998) or spatially disjunct popu-
lations (Ovenden et al., 1997). Sympatric or parapatric
taxa typically exhibit ecological differences, suggest-
ing that species are less generalized than previously
assumed; good recent examples of this include zon-
ation by depth within the deep sea (France, 1994;
France & Kocher, 1996) and the existence of species
complexes of symbiotic crustaceans associated with
different hosts (Stevens, 1990; Weber & Galleguil-
los, 1991; Duffy, 1996). Genetic analyses have been
used to document species introductions (e.g. Geller et
al., 1997) and can provide rapid methods for charac-
terizing planktonic copepod samples (Bucklin et al.,
1998).

Some groups of crustaceans are well studied
taxonomically and genetically, and several genetic
studies include explicit calibrations of rates of mo-



80

lecular evolution for the cytochrome oxidase I and
rRNA mitochondrial genes (Cunningham et al., 1992;
Sturmbauer et al., 1996; Knowlton & Weigt, 1998;
Schubart et al., 1998). Thus there is considerable
potential not only for the recognition of species bound-
aries but also for estimating the timing of their di-
vergences (see Discussion). Genetic studies of crus-
taceans can also draw on a large base of genetic data
available for other arthropods (e.g.Drosophila). Ana-
lyses of Crustacea are consequently more advanced
than those of many other marine invertebrates in some
respects. As with the molluscan examples discussed
above, these more detailed analyses have brought an
appreciation of potential complexities in the interpre-
tation of genetic data. Examples include the prob-
lem of pseudogenes (Schneider-Broussard & Neigel,
1997), coadaptation between nuclear and mitochon-
drial genomes (Burton et al., 1999) and inconsistency
of outcomes when different genes are compared (Bert
et al., 1996; Tam et al., 1996; Schneider-Broussard et
al., 1998).

Echinodermata

Sea urchins are a model system for developmental bio-
logists, and have also been extensively studied using
molecular genetic techniques from the perspectives of
population genetics and dispersal (e.g. Palumbi et al.,
1997; Lessios et al., 1998) and the nature of fertiliza-
tion barriers (e.g. Metz & Palumbi, 1996; Metz et al.,
1998a). Echinoderms have also figured prominently
in attempts to calibrate rates of molecular evolution
based on the Isthmus of Panama (Lessios, 1998),
thereby facilitating estimates of the times of species
divergences (see Discussion).

The use of genetic techniques to discriminate spe-
cies is, however, comparatively limited; recent studies
of potential species complexes not previously sum-
marized include those of the starfishLeptasterias
(Hrincevich & Foltz, 1996; Foltz, 1997) and the sea
cucumberCucumaria(Arndt et al., 1996). In the latter
case molecular data were used to synonymize taxa as
well as to separate them. Results fromLeptasterias,
as well as an earlier study ofEchinaster(Tuttle &
Lindahl, 1980), suggest that sibling species of starfish
may often lack fixed differences in allozymes.

Other marine invertebrates

Cryptic species have been investigated genetically in
only a few bryozoan genera, including studies of
Bugula(Davidson & Haygood, 1999) andStylopoma

(Jackson & Cheetham, 1994) not previously reviewed.
Stylopomais one of the few cases where genetic diver-
gence and morphological divergence have been com-
pared in detail; within this genus the correspondence
is quite strong, even where differences are subtle, and
lends support to the use of high-resolution morpho-
metrics in recognizing species in the fossil record. The
case ofBugula has applied importance: two cryptic
taxa that differ by about 9% in the mtDNA COI gene
harbor bacterial symbionts that differ in 4 of 1024
bp of the small subunit rRNA gene, and differ as
well in the production of anticancer bryostatin com-
pounds (Davidson & Haygood, 1999). The existence
of cryptic species that differ in their bioactive com-
pounds is likely to be a general phenomenon for which
genetic analyses are ideally suited (King et al., 1995).

Genetic studies of species boundaries in ascidians
are similarly limited, with only a few genera emer-
ging from bibliographic searches:Botryllus (Aron &
Solé-Cava, 1991),Pyura (Dalby, 1997) andHerd-
mania (Degnan & Lavin, 1995). In each of these
cases, the species could be readily distinguished by
color or other features, and genetic differences were
substantial. This suggests that the alpha taxonomy of
ascidians is plagued by excessive lumping, with many
more cryptic taxa yet to be discovered.

Cryptic species of nermerteans, often distinguish-
able by color, are also characterized by large ge-
netic differences (taxa from Table 1 of Knowlton,
1993; Rogers et al., 1995; Manchenko & Kulikova,
1996a). However, genetic analyses of nemerteans have
also shown that some forms that differ in color are
in fact conspecific (Sundberg & Andersson, 1995;
Manchenko & Kulikova, 1996b), indicating that color
is a potentially useful cue, but one that demands
genetic follow-up.

For most other groups, recent genetic analyses of
species boundaries are even more limited (e.g. for
hemichordates, see King et al., 1995; for gastrotrichs,
see Todaro et al., 1996; for priapulids, see Schrieber
et al., 1996; for vestimentiferans, see Kojima et al.,
1997). General conclusions about the extent to which
taxa are over- or under-split are impossible to draw
from such a scattered record.

Fish

Sharks and bony fishes have been extensively studied
genetically, largely from the perspective of elucidat-
ing stock structure, but also for recognizing species
boundaries; Ward & Grewe (1994) and Shaklee &
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Bentzen (1998) provide general reviews of this liter-
ature. Additional analyses of species boundaries not
cited by these authors include studies ofMyliobatis
(Levy & Conceição, 1989),Siganus(Lacson & Nel-
son, 1993),Naso(Dayton et al., 1994),Pleuronichthys
(Watanabe et al., 1994),Osmerus(Taylor & Dodson,
1994), several damselfish genera (Lacson, 1994; Lac-
son & Clark, 1995; Lessios et al., 1995),Lutjanus(Lee
& Cheng, 1996),Trematomus(Bernardi & Goswami,
1997), Cyclothone(Miya & Nishida, 1997),Mugil
(Rossi et al., 1998), andChaetodon(McMillan et al.,
1999).

Many of these studies exhibit the same kinds
of pattern as those shown by marine invertebrates,
namely the recognition that similar forms in either
sympatry or allopatry are clearly distinct on a genetic
basis. What is somewhat surprising, however, is the
considerable inconsistency among authors in their as-
signment of species level status to such forms. For
example, allopatric populations of damselfish species
belonging to several genera andMugil cephalusare
in each case distinguished by several fixed allozyme
differences (Lacson, 1994; Lacson & Clark, 1995;
Lessios et al., 1995; Rossi et al., 1998), but only
in one publication is species level distinction recom-
mended (Lessios et al., 1995). At the opposite end of
the spectrum, allopatric butterflyfishes that can only
be distinguished genetically by diagnostic sequences
in the rapidly evolving control region of mtDNA are
nevertheless recognized as distinct at the species level
(McMillan et al., 1999).

Many fishes are brightly colored, and fish system-
atists have often drawn on these color patterns to dis-
tinguish closely related species. Several recent studies
(Planes & Doherty, 1997; McMillan et al., 1999) show
how complex the relationship can be between color
pattern and genetic divergence. In the tropical damsel-
fish and butterflyfish studied by these authors, some
evidence for assortative mating was found, but pat-
terns were often inconsistent across regions. In both
cases partial reproductive boundaries associated with
color pattern appear to have been established very
recently (see Discussion).

Marine turtles and mammals

Slow rates of molecular evolution have been suggested
for both marine turtles (Bowen et al., 1993) and mar-
ine mammals (Garcia-Rodriguez et al., 1998). As a
consequence, even sympatric sibling species in these
groups may be hard to distinguish genetically, and

the interpretation of small differences in allopatry is
problematic. Nevertheless, genetic analyses have con-
firmed or suggested cryptic species in a number of
groups. In the turtles, genetic data were critical for
the recognition of the distinctiveness of the Kemp’s
and olive ridley turtles (Lepidochelys) and for show-
ing that Atlantic and eastern Pacific green turtles
(Chelonia mydas) were more distinct than the east-
ern Pacific green turtle and the so-called black turtle
from the western Pacific (C. agassizi) (Bowen et al.,
1993; Dutton et al., 1996). In marine mammals, ex-
amples of sibling species that have been recognized or
confirmed using molecular approaches include spot-
ted vs. harbor seals (Phoca), cryptic species within
both Bryde’s and minke whales (Balaenoptera), the
shortbeaked vs. longbeaked common dolphin (Del-
phinus), and several taxa of bottlenose dolphins (Tur-
siops) (Rice, 1998). Killer whales (Orcinus) exhibit
slight but fixed mtDNA differences between north-
ern ‘residents’, southern ‘residents’ and ‘transients’
(Hoelzel et al., 1998); transients and residents dif-
fer ecologically as well as genetically, but the role of
cultural transmission of behaviors coupled with very
limited dispersal between social groups complicates
the analysis of these data. Recent mitochondrial DNA
analyses of salt-water manatees (Trichechus manatus)
have revealed three deep, allopatric clades that are as
genetically distinct from each other as they are from
the freshwater manatee (T. inunguis) and comparable
to the differences observed between genera of whales
(Garcia-Rodrigues et al., 1998).

Many marine mammals have several geographi-
cally defined subspecies (Rice, 1998). Genetic tech-
niques may lead to the discovery of unique genetic
features that would permit their recognition on the
grounds of the phylogenetic species concept. Regard-
less of one’s opinion of the various species concepts,
some form of recognition of such taxa may facilitate
conservation of these often endangered groups.

Common themes and problems

Many of the patterns that emerged in this review,
based primarily on the more recent literature, are
similar to those I outlined before (Knowlton, 1993):
many sibling species continue to be discovered, and
in sympatry they often have characteristic differences
in ecology or life history, and can, in retrospect, be
identified by subtle differences in morphology or color
pattern. The importance of identifying species bound-
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aries for both basic and applied science is widely
acknowledged.

The biggest change in the time between these two
reviews is the increasing prominence of DNA ana-
lyses. For the 91 marine invertebrate genera listed
in Knowlton (1993, Table 1), protein data had been
published for 68 (75%) while DNA analyses were
available for only 6 (7%). In contrast, in the papers sur-
veyed for this review, analyses of species boundaries
used DNA-based techniques in 36 of 102 genera.

DNA and allozyme data sets have different
strengths and weaknesses which have been well re-
viewed by others (e.g. see Shaklee & Bentzen, 1998);
my purpose in focusing on the former is not to dis-
parage the latter, but rather to consider where newly
available DNA studies have important contributions
or implications for studies of species boundaries. Two
areas merit special attention: (1) the greater resolving
power of DNA analyses and the consequent implica-
tions for analyses of allopatric taxa, and (2) the ability
to estimate the time of origin of divergent taxa using
the molecular ‘clock’.

Lumping vs. splitting of allopatric taxa

Can the degree of genetic differentiation be used to
determine whether allopatric taxa merit recognition
at the species level? For Cracraft’s (1989) version of
the phylogenetic species concept the answer is simple:
any fixed difference will do. When genetic research
was dominated by allozyme analysis, this was a reas-
onable and often used approach, since fixed allozyme
differences do not rapidly evolve. Thorpe’s (1983)
summary of levels of genetic divergence (e.g. Nei’s
D) associated with clearly distinct species provided a
related criterion that has also been widely adopted by
systematists attempting to make taxonomic decisions
for allopatric taxa.

As Avise & Wollenberg (1997) point out, how-
ever, in an age of ready DNA analysis, finding fixed
differences becomes far simpler, with the real possi-
bility of needing to recognize trivially divergent taxa
at the species level if Cracraft’s (1989) version of the
phylogenetic species concept is applied. They persua-
sively argue that multiple concordant differences are a
far better criterion for recognizing species boundaries
and, that moreover, much of the conflict between the
biological and phylogenetic species concepts evapo-
rates when this approach is used.

An alternative, but not unrelated, approach would
be to use estimates of time since divergence to make

assessments of likelihood of interbreeding. Studies of
the Isthmus of Panama, for example, suggest that 3
million years is long enough for reproductive barriers
to form in a variety of marine taxa (Knowlton et al.,
1993; Lessios, 1998), although additional taxa should
be studied to determine how general is this result.
Data from the Isthmus are of particular relevance be-
cause they are based on allopatric taxa that have not
been influenced evolutionarily by secondary contact
since the connection between the Caribbean and east-
ern Pacific closed. This absence of secondary contact
is critical, because currently sympatric and allopatric
species do not exhibit the same relationships between
reproductive isolation and genetic differentiation. In
Drosophila, the only group for which we have exten-
sive data, prezygotic barriers are three times stronger
in sympatric taxa than in allopatric taxa for closely
related species of similar age, presumably due to the
effects of reinforcement (Coyne & Orr, 1997). Thus
it is appropriate, even within a single genus, that some
sympatric species are more similar to each other genet-
ically than are allopatric populations of other species
(e.g. Russo et al., 1994).

The age of recently diverged species

The ability to estimate the divergence times of spe-
cies by comparing DNA sequences, even if only
approximate, offers the opportunity to examine the
relationship between speciation and the broader pa-
leontological record of climatic change. In particular,
did many of the closely related taxa we are discovering
with genetic techniques emerge during the enormous
and cyclical changes in temperature and sea level as-
sociated with the waxing and waning of the ice ages
over the last 2.5 million years? Alternatively, are they
older or much younger?

Few attempts have been made to answer this ques-
tion for marine organisms generally, and indeed the
same question has generated debate for the much bet-
ter studied terrestrial realm (Avise & Walker, 1998;
Avise et al., 1998). Benzie (1999) provides the only
general summary of which I am aware which is based
on genetic data for marine organisms, and he focuses
on coral reef taxa. He argues that both intraspecific
population structure and interspecific species diver-
gences often date to the Pleistocene (less than 2mya).
The importance of lowered sea level in generating
divergences between conventionally conspecific popu-
lations in the Indian Ocean and western Pacific seems
robust as it is based on a number of analyses; the pat-
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terns observed are similar to those summarized on land
by Avise et al. However, species-level divergences cal-
ibrated by mtDNA clocks are based on a very limited
sample in Benzie’s (1999) analysis and are dominated
by Indo-West Pacific butterflyfishes, and by taxa sep-
arated by the Isthmus of Panama (which cannot have
diverged more recently than 3mya, see below).

Taxa separated by the Isthmus of Panama provide
other important data on this subject, however. If the
most similar transisthmian sister species taxa are as-
signed a divergence time of 3 million years ago, one
can then ask: how many non-transisthmian taxa are
younger? For snapping shrimp, the answer is none:
all other sibling species analyzed to date exhibit di-
vergences suggesting times of origin that precede the
closure of the Isthmus (Knowlton et al., 1993). A
number of other genetic studies also suggest older di-
vergences between sibling species (e.g. Bakker et al.,
1995a,b; Bucklin et al., 1995; Lessios et al., 1995).

There do, however, seem to be situations where
more recent divergences are not uncommon. Marine
snails and fish provide some of the best documented
examples of speciation events which are almost cer-
tainly comparatively recent (Reid et al., 1996; Marko,
1998; Metz et al., 1998b; McMillan et al., 1999). In-
terestingly, many snails do not seem to conform to the
classical allopatric model, in that sister species often
come from the same biogeographic province (Hellberg
& Vacquier, 1999). It is difficult to know whether these
cases of speciation during the past 2my reflect some
special attribute of the groups involved [e.g. sexual se-
lection acting on color patterns in fishes (see Galis &
Metz, 1998 for freshwater counterparts) and divergent
selection in gamete recognition proteins in gastropods
(Swanson & Vacquier, 1998; Hellberg & Vacquier,
1999)], or whether similar situations will emerge else-
where when other groups are more intensively studied.
However, marine taxa provide no good cases of instant
speciation or speciation in historical times; the only
proposed example (a founder event in a laboratory
population of polychaetes) has since been withdrawn
based on new genetic data (Rodrígues-Trelles et al.,
1996).

Final comments

As part of a symposium on the genetics of marine or-
ganisms, this paper has focused almost exclusively on
the application of molecular analyses to the problem of
understanding species in the sea. There is no denying

the power of these techniques, but they have far more
potential when combined with insights based on other
approaches. Many have made this point, but perhaps
none so eloquently as Evelyn Hutchinson (1975). His
tribute to Robert MacArthur (best known today for his
mathematical theory) closed with the following: “. . . a
wide and quite deep understanding of organisms, past
and present, is as basic a requirement as anything else
. . . it may best be self-taught, but how often is this dif-
ficult process made harder by a misplaced emphasis on
a quite specious modernity. Robert MacArthur really
knew his warblers.”

Unfortunately, we simply do not know our squids,
starfish and shrimp as well as ornithologists know their
birds, in part because of long-established taxonomic
traditions that depend on preserved material. If in our
enthusiasm for molecular genetics we simply replace
formalin with liquid nitrogen or DMSO, we will make
only limited progress in elucidating the pattern and
process of speciation in the sea.
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