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Abstract. Electrophoretic data from marine organisms
are routinely tested for conformity to expectations of the
Hardy-Weinberg rule, but the statistical procedures used
and the interpretation of their results are often flawed.
This paper summarizes literature on statistical testing for
Hardy-Weinberg equilibrium and suggests an analytical
strategy based on carrying out computationally simple
goodness-of-fit y* tests (with pooling and correction fac-
tors for continuity if necessary) when appropriate, and
resorting to computationally tedious, exact tests when
necessary. It recommends adjustments of significance
levels to avoid the large Type-I error that may result from
multiple tests for Hardy-Weinberg equilibrium, one for
each locus and each population. It points out the obvious
but common error of interpreting non-significant tests as
evidence of conformity to Hardy-Weinberg expectations,
and makes suggestions as to how tests that produce sig-
nificance can be used to reach conclusions of biological
relevance.

Introduction

Electrophoretic surveys commonly test genotype fre-
quencies statistically to see if they conform to Hardy-
Weinberg (HW) expectations. Although such tests can be
useful, they are frequently done erroneously, they rou-
tinely have the wrong significance values applied to them,
and they are often misinterpreted. One has the impres-
sion from the literature that most investigators proceed
with what is believed to be standard methodology, but
that they are sufficiently aware of its problems to dismiss
results from comparisons of their data to HW expecta-
tions with little or no comment. This practice seems
wasteful; either the tests should be performed correctly
and relied upon to provide information relevant to the
study, or they should be bypassed entirely. This paper
identifies some of the pitfalls associated with compari-
sons of observed genotype frequencies to those expected
from HW equilibrium as they are commonly done, and

provides a set ot guidelines as to how such comparisons
can be performed and interpreted. Specifically, this paper
deals with the questions: (1) What tests should be em-
ployed for the comparisons? (2) How should the existence
of rare genotypes be treated? (3) How shouid significance
levels be adjusted for multiple tests? (4) How should the
results of statistical testing be interpreted?

Hardy-Weinberg equilibrium

The HW rule states that in a population in which gametes
associate entirely at random, genotype frequencies within
one generation will follow the multinomial distribution,
with allele frequencies as the distribution parameters.
HW equilibrium is expected when (a) the entities for
which it is calculated segregate in a Mendelian fashion
(i.e., are alleles at one locus), (b) alleles are co-dominant,
so that all heterozygotes can be recognized, (c¢) the locus
is autosomal, (d) gene frequencies are the same in the two
sexes, (e) all genotypes are selectively equivalent, (f) all
reproduction is sexual, (g) mating is random throughout
the population, (h) no mutations occur, (i) no migration
takes place, and (j) populations are infinitely large. As no
natural population conforms exactly to all of these as-
sumptions, no natural population is exactly at HW equi-
librium (Smith 1970). The question is how well genotype
frequencies at every locus in each population approach
this ideal, and the object of comparing observed genotype
frequencies with those expected from the rule is to find
out whether one or more of the preconditions necessary
for HW equilibrium are violated.

It would appear simple to carry out a goodness-of-fit
test to see how well observed genotype frequencies con-
form to expected ones. However, the existence of a large
body of literature that presents new tests or modifications
to traditional ones in HW comparisons (Dobzhansky
and Levene 1948, Levene 1949, Haldane 1954, Li 1955, p.
13, Cannings and Edwards 1969, Brown 1970, Smith
1970, Mantel and Li 1974, Chapco 1976, Elston and
Forthofer 1977, Emigh 1980, Haber 1981, Louis and
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Dempster 1987, Lindley 1988, Hernandez and Weir 1989,
Weir 1990, p. 74), compares tests against each other
(Emigh and Kempthorne 1975, Elston and Folthofer
1977, Emigh 1980, Haber 1981, Hernandez and Weir
1989), or points out mistakes in the manner in which
previous tests have been applied (Dobzhansky and
Levene 1948, Crisp et al. 1978, Pamilo and Varvio-Aho
1984) belies this apparent simplicity. The complications
arise in part from the lack of independence of observed
and expected genotype frequencies, in part from the dis-
crete nature of Mendelian inheritance, but most often
from the properties of natural polymorphisms, which of-
ten include alleles in low frequency. An additional prob-
lem, identified by Cooper (1968) and by Rice (1989), but
ignored in practically all studies, comes from the fact that
electrophoretic surveys usually include many loci, and
carry out many simultaneous tests, thus greatly increas-
ing the probability of Type-I error.

Procedures for testing for fit
to Hardy-Weinberg expectations

Tests used to compare observed genotype frequencies to
those expected from HW equilibrium fall into three gen-
eral categories: (a) exact tests, (b) goodness-of-fit y? tests,
and (c) likelihood-ratio tests and log-linear models.

Exact tests calculate the probability that the observed
sample (and others less probable than the observed one)
could be drawn from the population by chance if the null
hypothesis held true. An exact test for HW ratios in a
locus with two alleles was proposed by Haldane (1954)
and extended for multiple alleles by Emigh (1980) and by
Louis and Dempster (1987). Chapco (1976) offered a
slightly different procedure based on a model of Can-
nings and Edwards (1969). This model has been criticized
by Emigh and Kempthorne (1975) as logically unsound.
The advantage of exact tests is that they are not adversely
affected by small expected values, and thus may be the
only valid tests when sample sizes are small and some
alleles are rare. Their disadvantage is that they require a
prodigious amount of computation in all but the simplest
cases.

Goodness-of-fit y? tests have intuitive appeal for com-
parisons between observed and expected distributions,
they are directly related to Wright’s (1969, p. 174) fixation
index, they are computationally simple, and they have
been exhaustively studied by statisticians. Although vari-
ous modifications specific to HW testing have been pro-
posed to the standard y2 test (e.g. Mantel and Li 1974,
Elston and Forthofer 1977), it has been found by Chapco
(1976), Emigh (1980), Haber (1981), and Hernandez and
Weir (1989) to perform quite well in comparison to exact
tests. The major disadvantage of y? testing is that it is
severely affected by small expected frequencies, thus
making it necessary to pool genotype classes.

Likelihood-ratio tests, although conceptually differ-
ent from goodness-of-fit tests, can be used interchange-
ably with the latter to test the hypothesis that deviations
of observed from expected genotype frequencies are
equal to zero. Despite the opinion of some authors to the
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contrary (e.g. Zar 1974, p. 50, Ferguson 1980, p. 164),
likelihood-ratio tests share the disadvantages of y? in
dealing with small expected frequencies, except under
some very restricted conditions (Larntz 1978, Sokal and
Rohlf 1981, p. 709).

Thus, the advantages and disadvantages of goodness-
of-fit tests and likelihood-ratio tests in simple HW testing
are about equal, and either one would serve in a given
situation. The distribution, behavior in relation to exact
tests, and appropriate correction factors of y? are better
known. Likelihood-ratio tests will, therefore, not be
treated further here. Clear explanations of their rationale
and instructions on how to carry them out can be found
in Sokal and Rohlf (1981, p. 692) and Weir (1990, p. 82).
Given the computational labor necessary to calculate ex-
act probabilities, especially when there are more than two
alleles (Hernandez and Weir 1989), the analytical strategy
proposed here consists of using a x> test whenever appro-
priate, and resorting to an exact test when necessary.

How should one test observed genotype frequencies to
see how well they approximate HW expectations? The
first decision regards the null hypothesis. Expected geno-
type frequencies can be calculated in several ways. One
way to avoid ad hoc pooling of genotypes is to test het-
erozygosities rather than genotype frequencies; i.e., to
pool all homozygotes and pool all heterozygotes at each
locus regardless of allele, and test them against predic-
tions of the HW rule about the expected pooled respec-
tive numbers (Dobzhansky and Epling 1944, Pamilo and
Varvio-Aho 1984). The test statistic will be:
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where N is the number of individuals sampled, p; and p;
are estimated frequencies of alleles i and j (i <)), n is the
number of alleles at the locus, O;; the number of het-
erozygotes of alleles i and j, and O;; is the number of
homozygotes of allele i. There is always one degree of
freedom in this test, and c is the correction factor for
continuity. The value of ¢ is usually 0.5 (Yates 1934), but
Emigh (1980) suggested that a value of 0.25 is preferable
for HW testing.

This approach is appropriate when deviations from
HW equilibrium are suspected to be due to aspects of the
mating structure of the population that affect overall
heterozygosity regardless of allele. It may be the only pos-
sible x? test when sample sizes are small, and there is one
common allele and many rare ones. Curie-Cohen (1982)
stated that it is the most relevant test when the inbreeding
coefficient is calculated as the overall heterozygote defi-
ciency. Its major disadvantage is that it has less statistical
power than tests that incorporate information about
individual genotypes (Dobzhansky and Levene 1948,
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Pamilo and Varvio-Aho 1984). It is almost powerless to
detect deviations due to forces that act on the frequency
of individual alleles or genotypes, such as selection and
mutation. Although significant results from this test indi-
cate significant deviations from HW expectations, non-
significant results may be due to pooling rather than a
good fit between expected and observed genotype distri-
butions. In the frequent case of disequilibrium suspected
to come from mixing of populations (Wahlund 1928), it
will not be an adequate test when there are more than two
alleles. Although the Wahlund effect decreases overall
heterozygosity in a locus, it may increase the frequencies
of particular heterozygotes, depending on the covari-
ances between gene frequencies of the source populations
(Nei 1965). Such increases will not only go undetected,
but will actually detract from the overall power of this
test. It is, therefore, often desirable to carry out an addi-
tional test of the frequency of each observed genotype
against what the HW rule expects. This is a procedure
that requires several decisions along the way, unless sam-
ple sizes are in the hundreds and there are no rare alleles.

For testing individual genotype frequencies one could
calculate the expected numbers from the HW formula as
Np? for homozygotes, and as 2 Np; p; for heterozygotes.
However, for small sample sizes (<100 individuals, ac-
cording to Spiess 1989, p. 42) a special problem arises.
Levene (1949), Haldane (1954), and Smith (1970) pointed
out that a finite sample from a population at HW equilib-
rium overrepresents the number of homozygotes; they
used a correction (usually referred to as Levene’s correc-
tion) for the asymptotic nature of gene frequencies. The
corrected expected values are:

for heterozygotes:
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Emigh (1980) found that the use of these expectations
in goodness-of-fit y? tests produces results that are, by-
and-large, compatible with exact tests. No matter how
individual expected genotype frequencies are estimated,
the goodness-of-fit 2 statistic is:
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¢ is the correction factor, which could be 0.5 or 0.25 in the
case of two alleles, and should be 0 for more than two
alleles. Because one degree of freedom is lost for each
estimated allele frequency, the degrees of freedom for this
test are not equal to the number of genotype classes mi-
nus one, but rather (Dobzhansky and Levene 1948, Ward
and Sing 1970, Crisp et al. 1978):
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A problem that invariably arises in goodness-of-fit
testing with the sample sizes usually employed in elec-

519

trophoretic surveys, is that rare alleles lead to small ex-
pected genotype frequencies. Because expected values ap-
pear in the denominator, the y? test can produce artifi-
cially inflated significance values. When Levene’s correc-
tion of expected values is used, a ¥? test will be impossible
whenever p;=1/(2 N), i.e., whenever a single allele of a
particular kind has been observed, because the expected
number of homozygotes for this allele will be zero. Above
this limiting value, there is uncertainty as to when it is
necessary to seek special remedies (Horn 1977). Roscoe
and Byars (1971) suggested that it is sufficient to have a
sample size that exceeds twice the number of genotype
classes when the significance level «=0.05, and four times
the number of genotype classes when a=0.01. Kendall
(1952) and Tate and Hayer (1973), on the other hand,
recommended that the minimum expected frequency
should be 20. Many authors have made recommenda-
tions that fall within the range of these two extremes (see
Tate and Hayer 1973). The rule most often given in statis-
tical textbooks is that of Cochran (1954), who advised
that for an unbiased y? all expected frequencies should be
larger than 1, and that more than 80% of the frequencies
should be more than 5. In y? tests, the problem of low
expected values is circumvented by pooling adjacent
classes with low frequencies. However, one cannot do so
indiscriminately when testing genotype frequencies. As
Pamilo and Varvio-Aho (1984) pointed out, the correct
procedure is to pool rare alleles, and recalculate expect-
ed and observed genotype frequencies. However, in the
case of a locus with two alleles, one of them rare, such
pooling results in no test at all, since it converts all indi-
viduals to homozygotes. In this particular case, the only
possible way to find out whether the genotype frequen-
cies deviate from HW expectations is an exact test. Com-
putational labor can be avoided by the use of the tables
published by Vithayasai (1973), in which the number of
heterozygotes compatible with HW equilibrium is given
as a function of sample size and frequency of the rarest
homozygote.

Significance levels

Electrophoretic studies usually include many loci, a large
fraction of which are polymorphic, and often sample
many populations. The number of simultaneous tests
carried out for HW equilibrium is often large, occasional-
ly exceeding 100 [see Winans (1980) for an example of 132
such tests]. The most serious and most common error in
HW testing of electrophoretic data is failure to adjust
significance levels for the numbers of tests carried out, a
failure that leads to conclusions of significance for devia-
tions that may be due to chance. Such adjustments are
not very complicated, and are ignored at the risk of viti-
ating the conclusions of the entire study.

To adjust significance levels for multiple tests, one can
use the standard Bonferroni technique (Miller 1980, p. 8)
of dividing the predetermined significance level, «, by the
number of tests, k, to obtain a corrected significance level,
o' =a/k. Each y? value is than considered significant at a
if it exceeds the y* value corresponding to a/k. A more
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powerful technique is the sequential Bonferroni, devised
by Holm (1979) and brought to the attention of evolu-
tionary biologists by Rice (1989). An even sharper (and
usually simpler) method of sequential comparisons is that
of Hochberg (1988). This procedure orders tests accord-
ing to their probability value. The highest probability
value, p,,, is compared to the significance level «. If p,, <a,
it and all smaller probabilities are judged significant, and
testing stops. If p,,>a, the test to which it pertains is
deemed not significant, and the comparisons continue
with subsequent probabilities, each compared to a modi-
fied significance level, a}, ; =a/(1 + i), where i is the num-
ber of tests already performed. When a test is significant,
testing stops, and it and all subsequent tests are deemed
significant.

The practical difficulty with applying any Bonferroni
technique in HW testing comes from the large number of
tests generally performed. Significance levels are usually
set at a maximum probability level of 0.05, but when &
exceeds 50, a/k is <0.001. Statistical tables that give 2
values for such small probabilities are hard to find. I am
only aware of one (Pearson and Hartley 1976, p. 128).
Three alternatives to the use of these tables are: (a) If the
%2 values are not too close to the critical region, a graphic
table can be used, such as that in Crow and Kimura
(1970, p. 516), which graphs them from P=0.0001 to
P=1.00. (b) If Emigh’s (1980) correction for continuity is
not used, a statistical package, such as SPSS (Norusis
1986) that gives probability values to four significant dig-
its can be employed to perform the y? tests. (c) One can
calculate the probability value corresponding to each
value of y2 from the incomplete gamma function. Press et
al. (1986, p. 165) providled FORTRAN and PASCAL
routines for doing so. An implementation of their al-
gorithms in DBASE-III + can be obtained on disk from
me. The last alternative is desirable if the techniques of
Holm (1979) or Hochberg (1988) are used, even if the
number of tests does not exceed 50, because in these
procedures the ordering of tests and the determination of
significance depends on the specific values of probability
corresponding to each test statistic. When degrees of free-
dom in all tests are the same, such ordering can be done
using the value of y? alone, but it will rarely be the case
that all polymorphic loci have the same number of alleles.
Loci with two alleles and low expected frequencies, for
which it is necessary to carry out exact tests rather than
goodness-of-fit tests, present a special practical problem
when the number of tests is > 5, because the lowest signif-
icance level in Vithayasai’s (1973) tables is 0.01. In this
case, the only alternative is to compute the exact proba-
bilities from the binomial, using Haldane’s (1954) meth-

.od. This can be done in terms of the observed number of
one of the two alleles, n; (where n,=20;,+0O;;=2Np)).
Conditional probabilities, Pr(E;;|n;) are calculated for all
possible values of E;;. The relation is:
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The logarithmic transformation is necessary, because
the untransformed function would cause computers and
calculators to overflow, even with small sample sizes.
Even so, it may be necessary to calculate the logarithms
of some factorials as sums of the logarithms of the fac-
tors. At the end of the calculations the logarithms can be
converted back to probability values. Note that these
probabilities are conditional on #; being fixed, so the
possible number of expected heterozygotes (E;;) corre-
sponding to every hypothetical value of homozygotes
(E;;) will be E;j=n,—2E; (i.e., every increase by one ho-
mozygote requires a corresponding decrease by two het-
erozygotes). The cumulative probability of the observed
genotype frequencies in the sample plus the sum of the
probabilities of all less likely combinations is then com-
pared to the significance level to determine whether the
deviations are significantly different from HW expecta-
tions. More details about Haldane’s exact test can be
found in Weir (1990, p. 78).

Whether one can mix probabilities obtained from y?2
and from exact tests in a sequential Bonferroni is debat-
able. When deviations in all comparisons are in the same
direction, the error that may arise from the slight differ-
ences of probabilities estimated from an approximate test
and calculated from an exact one will certainly be smaller
than the Type-I error that would result if the number of
tests is not taken into account. This is particularly true if
Levene’s correction is used in the calculation of expected
genotype frequencies. However, one should be careful in
mixing probabilities from y* and exact tests when there is
an excess of homozygotes in one and of heterozygotes in
the other. This is because the ? treats positive and nega-
tive deviations from expected values as equal, while in
exact tests heterozygote deficiencies come out as less
probable than excesses (Louis and Dempster 1987, Her-
nandez and Weir 1989). If the incompatible tests are close
to the critical region for assigning significance to all sub-
sequent tests, the only remedy is to calculate exact tests in
every case. One hopes that this problem will not appear
often, because the amount of computation required is
prohibitive even on a computer. For 4 alleles and a sam-
ple size of 20, there are 6671 probabilities to be calculated
(Hernandez and Weir 1989). In such cases, a pseudo-
probability test, based on a sample of the outcomes (Her-
nandez and Weir 1989) may be necessary.

Interpretation of results from tests
for Hardy-Weinberg expectations

Let us assume that tests have been performed, signifi-
cance levels have been adjusted, and the results indicate
that genotype frequencies in a few loci are significantly
different from HW expectations, while those in most loci
are not. How is one to interpret such results?

When genotype frequencies do not significantly devi-
ate from expected values, it is often assumed that they are
“in conformity with HW equilibrium”, and thus that the
populations and loci meet the requirements for reaching
this equilibrium. Such lack of significance is even used to
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support the assertion that the employed isozymes are
Mendelian characters (see Fairbairn and Roff 1980). This
is wrong. In tests for HW expectations, as in any statisti-
cal test, inability to reject the null hypothesis does not
necessarily indicate that the hypothesis holds, only that
the sample size was insufficient for its rejection. Although
the distinction between failing to reject and accepting a
null hypothesis is obvious to most biologists, a large
number of papers in the marine biological literature as-
sume — explicitly or tacitly — that loci are at HW equilib-
rium for no other reason than that significant differences
could not be demonstrated. This is done without any
consideration of the statistical power of the employed test
(sece Cohen 1988, Fairbairn and Roff 1980, Peterman
1989), even though it has long been clear that HW testing
with realistic sample sizes is, even under the best of condi-
tions, a procedure prone to Type-II error in detecting
statistically significant effects of inbreeding (Ward and
Sing 1970, Haber 1980), or deviations from Mendelian
inheritance (Fairbairn and Roff 1980). In addition to the
general problem of asymmetry in hypothesis testing, the
HW rule has some unique problems. It is, for example,
possible for a population in which individuals do not
mate at random to have a genotype frequency distribu-
tion that mimics the multinomial (Li 1988), or for a locus
under strong selection to have no appreciable deviations
from HW proportions (Wallace 1958, Lewontin and
Cockerham 1959, Li 1959, Workman 1969, Schaap 1980).
It is also possible that factors that would cause deviations
from HW expectations may pull genotype frequencies in
opposite directions, so that the end result is non-signifi-
cant differences between numbers of observed and ex-
pected genotypes (Workman 1969, Cavalli-Sforza and
Bodmer 1971, p. 58).

Thus, little can be made of non-significant results, ex-
cept in comparison with significant ones. Significant de-
viations, on the other hand, definitely mean that one or
more of the preconditions for observing HW equilibrium
do not hold. The problem is to determine which of the
possible causes of deviation can account for the observed
departures. Obviously, one needs to consider sources of
error, such as biased sampling or incorrect scoring of
gels, as well as the possibility that isozymes at the loci that
control the particular enzyme may not behave as simple
Mendelian traits, due to post-translational modifications
or dominance arising from null alleles (Fairbairn and
Roff 1980). Attention to these possibilities is necessary
for all loci, whether or not they show significance in tests
for HW proportions. The question is whether significant
deviations (and thus tests for HW equilibrium) can
provide useful information about the genetics of the sam-
pled populations. I believe that such tests, carried out in
an extensive fashion with no intention of testing any par-
ticular biological hypothesis, are of limited value and not
worth reporting in detail. Tests for HW proportions can
be useful — and significant deviations can be meaningful
— in testing a specific hypothesis based on the biology of
the population or on the genetics of the locus. This is the
case when genetic data are gathered to test the possibility
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(or determine the consequences) of asexual reproduction
(c.g. Ayre 1984, Hoffmann 1986, Mladenov and Emson
1990), self fertilization (e.g. Brown 1979), or partheno-
genesis (Lynch 1983). Such tests can also be useful when
examining the possibility that the sample includes two or
more assortatively mating populations, such as sibling
species (e.g. Makela and Richardson 1977) or immigrants
from locally mating populations (e.g. Johnson and Black
1984). In all cases, the multiplicity of possible causes of
deviation from HW expectation constrain comparisons
between observed and expected genotype frequencies to
the role of circumstantial evidence in favor of the exis-
tence of the alleged phenomenon. This weakness can be
partially overcome in cases where a hypothesis alternate
to HW equilibrium can be stated in terms of expected
genotype frequencies and tested. This usually takes the
form of calculating the fixation index expected under
each condition. For an example of the utility of this ap-
proach see Brown (1979), and for calculations of expect-
ed fixation indices in cases of sex linkage, mating between
relatives, various degrees of self-fertilization, biased sex
ratios, polysomy, and changing population size see
Wright (1969, p. 174—210). More elaborate models, in-
volving a varying number of assumptions, have been of-
fered for specific cases, such as variable degrees of self-
fertilization (Hedrick and Cockerham 1986), finite
parental mating populations (Robertson 1965, Kirby
1975, Robertson and Hill 1984), isoloci resulting from
polyploidization (Stoneking et al. 1981, Waples 1988),
and population subdivision (Nei 1965, Sinnock 1975,
Makela and Richardson 1977). When no alternative hy-
pothesis can be formulated and tested, inferences as to
the true cause of discrepancies from equilibrium can be
strengthened through comparisons between populations
or between loci. If a population is suspected to be influ-
enced by a factor that draws it away from equilibrium,
comparisons of deviations with other populations in
which this factor is absent (if such a population can be
found) should reveal whether the suspected factor is like-
ly to be the true cause of the discrepancies. Similarly,
certain destabilizing forces, such as selection and muta-
tion, act on a single locus, while others, such as popula-
tion subdivision or inbreeding, act on all loci. Thus, com-
parisons between loci and testing for linkage disequilibri-
um (Weir and Cockerham 1989) may be instructive. Nei-
ther comparisons to expectations of alternate hypotheses,
nor comparisons between populations or between loci
will necessarily reveal the processes taking place in natu-
ral populations, because the needed parameters are some-
times impossible to measure. However, the evidence that
comes from testing against HW expectations, when com-
bined with other sources of information, can serve as a
basis for further investigation. For this reason alone, it is
important that the statistical tests be performed correctly.
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